您好,登錄后才能下訂單哦!
這篇文章給大家分享的是有關(guān)pytorch nn.Conv2d()中padding以及輸出大小方式的示例分析的內(nèi)容。小編覺得挺實(shí)用的,因此分享給大家做個(gè)參考,一起跟隨小編過來看看吧。
代碼
conv1=nn.Conv2d(1,2,kernel_size=3,padding=1) conv2=nn.Conv2d(1,2,kernel_size=3) inputs=torch.Tensor([[[[1,2,3], [4,5,6], [7,8,9]]]]) print("input size: ",inputs.shape) outputs1=conv1(inputs) print("output1 size: ",outputs1.shape) outputs2=conv2(inputs) print("output2 size: ",outputs2.shape) 輸出: input size: torch.Size([1, 1, 3, 3]) output1 size: torch.Size([1, 2, 3, 3]) output2 size: torch.Size([1, 2, 1, 1])
padding是指卷積前進(jìn)行padding,這樣保證輸出的圖像形狀大小與輸入相同,但是通道數(shù)channel改變了。
感謝各位的閱讀!關(guān)于“pytorch nn.Conv2d()中padding以及輸出大小方式的示例分析”這篇文章就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,讓大家可以學(xué)到更多知識(shí),如果覺得文章不錯(cuò),可以把它分享出去讓更多的人看到吧!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。