您好,登錄后才能下訂單哦!
廢話不多說(shuō),大家直接看代碼吧!
"""遺傳算法實(shí)現(xiàn)求函數(shù)極大值—Zjh""" import numpy as np import random import matplotlib.pyplot as plt class Ga(): """求出二進(jìn)制編碼的長(zhǎng)度""" def __init__(self): self.boundsbegin = -2 self.boundsend = 3 precision = 0.0001 # 運(yùn)算精確度 self.Bitlength = int(np.log2((self.boundsend - self.boundsbegin)/precision))+1#%染色體長(zhǎng)度 self.popsize = 50# 初始種群大小 self.Generationmax = 12# 最大進(jìn)化代數(shù) self.pcrossover = 0.90# 交叉概率 self.pmutation = 0.2# 變異概率 self.population=np.random.randint(0,2,size=(self.popsize,self.Bitlength)) """計(jì)算出適應(yīng)度""" def fitness(self,population): Fitvalue=[] cumsump = [] for i in population: x=self.transform2to10(i)#二進(jìn)制對(duì)應(yīng)的十進(jìn)制 xx=self.boundsbegin + x * (self.boundsend - self.boundsbegin) / (pow(2,self.Bitlength)-1) s=self.targetfun(xx) Fitvalue.append(s) fsum=sum(Fitvalue) everypopulation=[x/fsum for x in Fitvalue] cumsump.append(everypopulation[0]) everypopulation.remove(everypopulation[0]) for j in everypopulation: p=cumsump[-1]+j cumsump.append(p) return Fitvalue,cumsump """選擇兩個(gè)基因,準(zhǔn)備交叉""" def select(self,cumsump): seln=[] for i in range(2): j = 1 r=np.random.uniform(0,1) prand =[x-r for x in cumsump] while prand[j] < 0: j = j + 1 seln.append(j) return seln """交叉""" def crossover(self, seln, pc): d=self.population[seln[1]].copy() f=self.population[seln[0]].copy() r=np.random.uniform() if r<pc: print('yes') c=np.random.randint(1,self.Bitlength-1) print(c) a=self.population[seln[1]][c:] b=self.population[seln[0]][c:] d[c:]=b f[c:]=a print(d) print(f) g=d h=f else: g=self.population[seln[1]] h=self.population[seln[0]] return g,h """變異操作""" def mutation(self,scnew,pmutation): r=np.random.uniform(0, 1) if r < pmutation: v=np.random.randint(0,self.Bitlength) scnew[v]=abs(scnew[v]-1) else: scnew=scnew return scnew """二進(jìn)制轉(zhuǎn)換為十進(jìn)制""" def transform2to10(self,population): #x=population[-1] #最后一位的值 x=0 #n=len(population) n=self.Bitlength p=population.copy() p=p.tolist() p.reverse() for j in range(n): x=x+p[j]*pow(2,j) return x #返回十進(jìn)制的數(shù) """目標(biāo)函數(shù)""" def targetfun(self,x): #y = x∗(np.sin(10∗(np.pi)∗x))+ 2 y=x*(np.sin(10*np.pi*x))+2 return y if __name__ == '__main__': Generationmax=12 gg=Ga() scnew=[] ymax=[] #print(gg.population) Fitvalue, cumsump=gg.fitness(gg.population) Generation = 1 while Generation < Generationmax +1: Fitvalue, cumsump = gg.fitness(gg.population) for j in range(0,gg.popsize,2): seln = gg.select( cumsump) #返回選中的2個(gè)個(gè)體的序號(hào) scro = gg.crossover(seln, gg.pcrossover) #返回兩條染色體 s1=gg.mutation(scro[0],gg.pmutation) s2=gg.mutation(scro[1],gg.pmutation) scnew.append(s1) scnew.append(s2) gg.population = scnew Fitvalue, cumsump = gg.fitness(gg.population) fmax=max(Fitvalue) d=Fitvalue.index(fmax) ymax.append(fmax) x = gg.transform2to10(gg.population[d]) xx = gg.boundsbegin + x * (gg.boundsend - gg.boundsbegin) / (pow(2, gg.Bitlength) - 1) Generation = Generation + 1 Bestpopulation = xx Targetmax = gg.targetfun(xx) print(xx) print(Targetmax) x=np.linspace(-2,3,30) y=x*(np.sin(10*np.pi*x))+2 plt.scatter(2.65,4.65,c='red') plt.xlim(0,5) plt.ylim(0,6) plt.plot(x,y) plt.annotate('local max', xy=(2.7,4.8), xytext=(3.6, 5.2),arrowprops=dict(facecolor='black', shrink=0.05)) plt.show()
一個(gè)函數(shù)求極值的仿真的作業(yè),參考了別人的matlab代碼,用python復(fù)現(xiàn)了一遍,加深印象!
以上這篇python 遺傳算法求函數(shù)極值的實(shí)現(xiàn)代碼就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持億速云。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。