您好,登錄后才能下訂單哦!
今天小編給大家分享一下Python浮點數(shù)乘法和整形乘除法的效率實例分析的相關(guān)知識點,內(nèi)容詳細,邏輯清晰,相信大部分人都還太了解這方面的知識,所以分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后有所收獲,下面我們一起來了解一下吧。
我們每次把整形加減自身/10,來模擬上下浮動10%,并把浮點形乘1.1(0.9)并修正eps精度誤差。
測試代碼如下:
int main() { const int N=1e8; int64_t t1=clk(); for(int i=0;i<N;i++) { long long x=i; x=x+x/10; x=x-x/10; } int64_t t2=clk(); for(int i=0;i<N;i++) { double x=i; x=x*1.1+1e-5; x=x*0.9-1e-5; } int64_t t3=clk(); cout<<"long long "<<t2-t1<<endl; cout<<"double "<<t3-t2<<endl; }
結(jié)果:
long long花了1541ms,是double的幾乎十倍。
除法相較于加減乘有較大的常數(shù)。
現(xiàn)在再試試另一種方法,即把0.9x<y<1.1x變成9x<10y<11x的形式,這樣不就全是整形乘法了嗎?但是三次整形乘法和兩次浮點乘法兩次浮點加減法哪個慢呢?
測試代碼如下:
int main() { const int N=1e8; int64_t t1=clk(); for(int i=0;i<N;i++) { long long x=i; x=x*11; x=x*9; x=x*10; } int64_t t2=clk(); for(int i=0;i<N;i++) { double x=i; x=x*1.1+1e-5; x=x*0.9-1e-5; } int64_t t3=clk(); cout<<"long long "<<t2-t1<<endl; cout<<"double "<<t3-t2<<endl; }
結(jié)果:
我們可以看到,雖然單次浮點乘法的常數(shù)會略大于整形乘法,但是三次整形乘法還是慢于兩次浮點乘法的。
測試代碼:
int main() { const int N=1e8; int64_t t1=clk(); for(int i=0;i<N;i++) { long long x=i; x=x*11ll; } int64_t t2=clk(); for(int i=0;i<N;i++) { double x=i; x=x*1.1; } int64_t t3=clk(); cout<<"long long "<<t2-t1<<endl; cout<<"double "<<t3-t2<<endl; }
結(jié)果:
我們可以看到,單次浮點乘法的常數(shù)大概會比整形大50%左右,所以三次整形乘法還是略慢于兩次浮點乘法的。
以上就是“Python浮點數(shù)乘法和整形乘除法的效率實例分析”這篇文章的所有內(nèi)容,感謝各位的閱讀!相信大家閱讀完這篇文章都有很大的收獲,小編每天都會為大家更新不同的知識,如果還想學習更多的知識,請關(guān)注億速云行業(yè)資訊頻道。
免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。