您好,登錄后才能下訂單哦!
本篇內(nèi)容主要講解“Python的高級(jí)用法有哪些”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實(shí)用性強(qiáng)。下面就讓小編來帶大家學(xué)習(xí)“Python的高級(jí)用法有哪些”吧!
Lambda 函數(shù)
Lambda 函數(shù)是一種比較小的匿名函數(shù)——匿名是指它實(shí)際上沒有函數(shù)名。
Python 函數(shù)通常使用 def a_function_name() 樣式來定義,但對(duì)于 lambda 函數(shù),我們根本沒為它命名。這是因?yàn)?lambda 函數(shù)的功能是執(zhí)行某種簡單的表達(dá)式或運(yùn)算,而無需完全定義函數(shù)。
lambda 函數(shù)可以使用任意數(shù)量的參數(shù),但表達(dá)式只能有一個(gè)。
x = lambda a, b : a * b print(x(5, 6)) # prints 30 x = lambda a : a*3 + 3 print(x(3)) # prints 12
看它多么簡單!我們執(zhí)行了一些簡單的數(shù)學(xué)運(yùn)算,而無需定義整個(gè)函數(shù)。這是 Python 的眾多特征之一,這些特征使它成為一種干凈、簡單的編程語言。
Map 函數(shù)
Map() 是一種內(nèi)置的 Python 函數(shù),它可以將函數(shù)應(yīng)用于各種數(shù)據(jù)結(jié)構(gòu)中的元素,如列表或字典。對(duì)于這種運(yùn)算來說,這是一種非常干凈而且可讀的執(zhí)行方式。
def square_it_func(a): return a * a x = map(square_it_func, [1, 4, 7]) print(x) # prints [1, 16, 47] def multiplier_func(a, b): return a * b x = map(multiplier_func, [1, 4, 7], [2, 5, 8]) print(x) # prints [2, 20, 56] 看看上面的示例!我們可以將函數(shù)應(yīng)用于單個(gè)或多個(gè)列表。實(shí)際上,你可以使用任何 Python 函數(shù)作為 map 函數(shù)的輸入,只要它與你正在操作的序列元素是兼容的。
Filter 函數(shù)
filter 內(nèi)置函數(shù)與 map 函數(shù)非常相似,它也將函數(shù)應(yīng)用于序列結(jié)構(gòu)(列表、元組、字典)。二者的關(guān)鍵區(qū)別在于 filter() 將只返回應(yīng)用函數(shù)返回 True 的元素。
詳情請看如下示例:
# Our numbers numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] # Function that filters out all numbers which are odd def filter_odd_numbers(num): if num % 2 == 0: return True else: return False filtered_numbers = filter(filter_odd_numbers, numbers) print(filtered_numbers) # filtered_numbers = [2, 4, 6, 8, 10, 12, 14]
我們不僅評(píng)估了每個(gè)列表元素的 True 或 False,filter() 函數(shù)還確保只返回匹配為 True 的元素。非常便于處理檢查表達(dá)式和構(gòu)建返回列表這兩步。
Itertools 模塊
Python 的 Itertools 模塊是處理迭代器的工具集合。迭代器是一種可以在 for 循環(huán)語句(包括列表、元組和字典)中使用的數(shù)據(jù)類型。
使用 Itertools 模塊中的函數(shù)讓你可以執(zhí)行很多迭代器操作,這些操作通常需要多行函數(shù)和復(fù)雜的列表理解。關(guān)于 Itertools 的神奇之處,請看以下示例:
from itertools import * # Easy joining of two lists into a list of tuples for i in izip([1, 2, 3], [ a , b , c ]): print i # ( a , 1) # ( b , 2) # ( c , 3) # The count() function returns an interator that # produces consecutive integers, forever. This # one is great for adding indices next to your list # elements for readability and convenience for i in izip(count(1), [ Bob , Emily , Joe ]): print i # (1, Bob ) # (2, Emily ) # (3, Joe ) # The dropwhile() function returns an iterator that returns # all the elements of the input which come after a certain # condition becomes false for the first time. def check_for_drop(x): print Checking: , x return (x > 5) for i in dropwhile(should_drop, [2, 4, 6, 8, 10, 12]): print Result: , i # Checking: 2 # Checking: 4 # Result: 6 # Result: 8 # Result: 10 # Result: 12 # The groupby() function is great for retrieving bunches # of iterator elements which are the same or have similar # properties a = sorted([1, 2, 1, 3, 2, 1, 2, 3, 4, 5]) for key, value in groupby(a): print(key, value), end= ) # (1, [1, 1, 1]) # (2, [2, 2, 2]) # (3, [3, 3]) # (4, [4]) # (5, [5])
Generator 函數(shù)
Generator 函數(shù)是一個(gè)類似迭代器的函數(shù),即它也可以用在 for 循環(huán)語句中。這大大簡化了你的代碼,而且相比簡單的 for 循環(huán),它節(jié)省了很多內(nèi)存。
比如,我們想把 1 到 1000 的所有數(shù)字相加,以下代碼塊的第一部分向你展示了如何使用 for 循環(huán)來進(jìn)行這一計(jì)算。
如果列表很小,比如 1000 行,計(jì)算所需的內(nèi)存還行。但如果列表巨長,比如十億浮點(diǎn)數(shù),這樣做就會(huì)出現(xiàn)問題了。使用這種 for 循環(huán),內(nèi)存中將出現(xiàn)大量列表,但不是每個(gè)人都有無限的 RAM 來存儲(chǔ)這么多東西的。Python 中的 range() 函數(shù)也是這么干的,它在內(nèi)存中構(gòu)建列表。
代碼中第二部分展示了使用 Python generator 函數(shù)對(duì)數(shù)字列表求和。generator 函數(shù)創(chuàng)建元素,并只在必要時(shí)將其存儲(chǔ)在內(nèi)存中,即一次一個(gè)。這意味著,如果你要?jiǎng)?chuàng)建十億浮點(diǎn)數(shù),你只能一次一個(gè)地把它們存儲(chǔ)在內(nèi)存中!Python 2.x 中的 xrange() 函數(shù)就是使用 generator 來構(gòu)建列表。
上述例子說明:如果你想為一個(gè)很大的范圍生成列表,那么就需要使用 generator 函數(shù)。如果你的內(nèi)存有限,比如使用移動(dòng)設(shè)備或邊緣計(jì)算,使用這一方法尤其重要。
也就是說,如果你想對(duì)列表進(jìn)行多次迭代,并且它足夠小,可以放進(jìn)內(nèi)存,那最好使用 for 循環(huán)或 Python 2.x 中的 range 函數(shù)。因?yàn)? generator 函數(shù)和 xrange 函數(shù)將會(huì)在你每次訪問它們時(shí)生成新的列表值,而 Python 2.x range 函數(shù)是靜態(tài)的列表,而且整數(shù)已經(jīng)置于內(nèi)存中,以便快速訪問。
# (1) Using a for loopv numbers = list() for i in range(1000): numbers.append(i+1) total = sum(numbers) # (2) Using a generator def generate_numbers(n): num, numbers = 1, [] while num < n: numbers.append(num) num += 1 return numbers total = sum(generate_numbers(1000)) # (3) range() vs xrange() total = sum(range(1000 + 1)) total = sum(xrange(1000 + 1))
到此,相信大家對(duì)“Python的高級(jí)用法有哪些”有了更深的了解,不妨來實(shí)際操作一番吧!這里是億速云網(wǎng)站,更多相關(guān)內(nèi)容可以進(jìn)入相關(guān)頻道進(jìn)行查詢,關(guān)注我們,繼續(xù)學(xué)習(xí)!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。