您好,登錄后才能下訂單哦!
本篇內(nèi)容主要講解“Python的技巧有哪些”,感興趣的朋友不妨來(lái)看看。本文介紹的方法操作簡(jiǎn)單快捷,實(shí)用性強(qiáng)。下面就讓小編來(lái)帶大家學(xué)習(xí)“Python的技巧有哪些”吧!
1、對(duì)輸入的字符串“消毒”
對(duì)用戶輸入的內(nèi)容“消毒”,這問(wèn)題幾乎適用于你編寫的所有程序。通常將字符轉(zhuǎn)換為小寫或大寫就足夠了,有時(shí)你還可以使用正則表達(dá)式來(lái)完成工作,但是對(duì)于復(fù)雜的情況,還有更好的方法:
user_input = "This string has some whitespaces... " character_map = { ord( ) : , ord( ) : , ord( ) : None } user_input.translate(character_map) # This string has some whitespaces... "
在此示例中,你可以看到空格字符“ ”和“ ”被單個(gè)空格替換了,而“ ”則被完全刪除。這是一個(gè)簡(jiǎn)單的示例,但是我們可以更進(jìn)一步,使用unicodedata 庫(kù)及其 combining() 函數(shù),來(lái)生成更大的重映射表(remapping table),并用它來(lái)刪除字符串中所有的重音。
2、對(duì)迭代器切片
如果你嘗試直接對(duì)迭代器切片,則會(huì)得到 TypeError ,提示說(shuō)該對(duì)象不可取下標(biāo)(not subscriptable),但是有一個(gè)簡(jiǎn)單的解決方案:
import itertools s = itertools.islice(range(50), 10, 20) # <itertools.islice object at 0x7f70fab88138> for val in s: ...
使用itertools.islice,我們可以創(chuàng)建一個(gè) islice 對(duì)象,該對(duì)象是一個(gè)迭代器,可以生成我們所需的內(nèi)容。但是這有個(gè)重要的提醒,即它會(huì)消耗掉切片前以及切片對(duì)象 islice 中的所有元素。
(譯注:更多關(guān)于迭代器切片的內(nèi)容,可閱讀Python進(jìn)階:迭代器與迭代器切片)
3、跳過(guò)可迭代對(duì)象的開(kāi)始
有時(shí)候你必須處理某些文件,它們以可變數(shù)量的不需要的行(例如注釋)為開(kāi)頭。itertools 再次提供了簡(jiǎn)單的解決方案:
string_from_file = """ // Author: ... // License: ... // // Date: ... Actual content... """ import itertools for line in itertools.dropwhile(lambda line:line.startswith("//"), string_from_file.split(" ")): print(line)
這段代碼僅會(huì)打印在初始的注釋部分之后的內(nèi)容。如果我們只想丟棄迭代器的開(kāi)頭部分(在此例中是注釋),并且不知道有多少內(nèi)容,那么此方法很有用。
4、僅支持關(guān)鍵字參數(shù)(kwargs)的函數(shù)
當(dāng)需要函數(shù)提供(強(qiáng)制)更清晰的參數(shù)時(shí),創(chuàng)建僅支持關(guān)鍵字參數(shù)的函數(shù),可能會(huì)挺有用:
def test(*, a, b): pass test("value for a", "value for b") # TypeError: test() takes 0 positional arguments... test(a="value", b="value 2") # Works...
如你所見(jiàn),可以在關(guān)鍵字參數(shù)之前,放置單個(gè) * 參數(shù)來(lái)輕松解決此問(wèn)題。如果我們將位置參數(shù)放在 * 參數(shù)之前,則顯然也可以有位置參數(shù)。
5、創(chuàng)建支持 with 語(yǔ)句的對(duì)象
我們都知道如何使用 with 語(yǔ)句,例如打開(kāi)文件或者是獲取鎖,但是我們可以實(shí)現(xiàn)自己的么?是的,我們可以使用__enter__ 和__exit__ 方法來(lái)實(shí)現(xiàn)上下文管理器協(xié)議:
class Connection: def __init__(self): ... def __enter__(self): # Initialize connection... def __exit__(self, type, value, traceback): # Close connection... with Connection() as c: # __enter__() executes ... # conn.__exit__() executes
這是在 Python 中實(shí)現(xiàn)上下文管理的最常見(jiàn)方法,但是還有一種更簡(jiǎn)單的方法:
from contextlib import contextmanager @contextmanager def tag(name): print(f"<{name}>") yield print(f"</{name}>") with tag("h2"): print("This is Title.")
上面的代碼段使用 contextmanager 裝飾器實(shí)現(xiàn)了內(nèi)容管理協(xié)議。tag 函數(shù)的第一部分(yield 之前)會(huì)在進(jìn)入 with 語(yǔ)句時(shí)執(zhí)行,然后執(zhí)行 with 的代碼塊,最后會(huì)執(zhí)行 tag 函數(shù)的剩余部分。
5、用__slots__節(jié)省內(nèi)存
如果你曾經(jīng)編寫過(guò)一個(gè)程序,該程序創(chuàng)建了某個(gè)類的大量實(shí)例,那么你可能已經(jīng)注意到你的程序突然就需要大量?jī)?nèi)存。那是因?yàn)?Python 使用字典來(lái)表示類實(shí)例的屬性,這能使其速度變快,但內(nèi)存不是很高效。通常這不是個(gè)問(wèn)題,但是,如果你的程序遇到了問(wèn)題,你可以嘗試使用__slots__ :
class Person: __slots__ = ["first_name", "last_name", "phone"] def __init__(self, first_name, last_name, phone): self.first_name = first_name self.last_name = last_name self.phone = phone
這里發(fā)生的是,當(dāng)我們定義__slots__屬性時(shí),Python 使用固定大小的小型數(shù)組,而不是字典,這大大減少了每個(gè)實(shí)例所需的內(nèi)存。使用__slots__還有一些缺點(diǎn)——我們無(wú)法聲明任何新的屬性,并且只能使用在__slots__中的屬性。同樣,帶有__slots__的類不能使用多重繼承。
6、限制CPU和內(nèi)存使用量
如果不是想優(yōu)化程序內(nèi)存或 CPU 使用率,而是想直接將其限制為某個(gè)固定數(shù)字,那么 Python 也有一個(gè)庫(kù)能做到:
import signal import resource import os # To Limit CPU time def time_exceeded(signo, frame): print("CPU exceeded...") raise SystemExit(1) def set_max_runtime(seconds): # Install the signal handler and set a resource limit soft, hard = resource.getrlimit(resource.RLIMIT_CPU) resource.setrlimit(resource.RLIMIT_CPU, (seconds, hard)) signal.signal(signal.SIGXCPU, time_exceeded) # To limit memory usage def set_max_memory(size): soft, hard = resource.getrlimit(resource.RLIMIT_AS) resource.setrlimit(resource.RLIMIT_AS, (size, hard))
在這里,我們可以看到兩個(gè)選項(xiàng),可設(shè)置最大 CPU 運(yùn)行時(shí)間和內(nèi)存使用上限。對(duì)于 CPU 限制,我們首先獲取該特定資源(RLIMIT_CPU)的軟限制和硬限制,然后通過(guò)參數(shù)指定的秒數(shù)和先前獲取的硬限制來(lái)設(shè)置它。最后,如果超過(guò) CPU 時(shí)間,我們將注冊(cè)令系統(tǒng)退出的信號(hào)。至于內(nèi)存,我們?cè)俅潍@取軟限制和硬限制,并使用帶有 size 參數(shù)的setrlimit 和獲取的硬限制對(duì)其進(jìn)行設(shè)置。
8、控制可以import的內(nèi)容
某些語(yǔ)言具有非常明顯的用于導(dǎo)出成員(變量、方法、接口)的機(jī)制,例如Golang,它僅導(dǎo)出以大寫字母開(kāi)頭的成員。另一方面,在 Python 中,所有內(nèi)容都會(huì)被導(dǎo)出,除非我們使用__all__ :
def foo(): pass def bar(): pass __all__ = ["bar"]
使用上面的代碼段,我們可以限制from some_module import * 在使用時(shí)可以導(dǎo)入的內(nèi)容。對(duì)于以上示例,通配導(dǎo)入時(shí)只會(huì)導(dǎo)入 bar。此外,我們可以將__all__ 設(shè)為空,令其無(wú)法導(dǎo)出任何東西,并且在使用通配符方式從此模塊中導(dǎo)入時(shí),將引發(fā) AttributeError。
9、比較運(yùn)算符的簡(jiǎn)便方法
為一個(gè)類實(shí)現(xiàn)所有比較運(yùn)算符可能會(huì)很煩人,因?yàn)橛泻芏嗟谋容^運(yùn)算符——__lt__、__le__、__gt__ 或__ge__。但是,如果有更簡(jiǎn)單的方法呢?functools.total_ordering 可救場(chǎng):
from functools import total_ordering @total_ordering class Number: def __init__(self, value): self.value = value def __lt__(self, other): return self.value < other.value def __eq__(self, other): return self.value == other.value print(Number(20) > Number(3)) print(Number(1) < Number(5)) print(Number(15) >= Number(15)) print(Number(10) <= Number(2))
這到底如何起作用的?total_ordering 裝飾器用于簡(jiǎn)化為我們的類實(shí)例實(shí)現(xiàn)排序的過(guò)程。只需要定義__lt__ 和__eq__,這是最低的要求,裝飾器將映射剩余的操作——它為我們填補(bǔ)了空白。
( 譯注: 原作者的文章分為兩篇,為了方便讀者們閱讀,我特將它們整合在一起,以下便是第二篇的內(nèi)容。)
10、使用slice函數(shù)命名切片
使用大量硬編碼的索引值會(huì)很快搞亂維護(hù)性和可讀性。一種做法是對(duì)所有索引值使用常量,但是我們可以做得更好:
# ID First Name Last Name line_record = "2 John Smith" ID = slice(0, 8) FIRST_NAME = slice(9, 21) LAST_NAME = slice(22, 27) name = f"{line_record[FIRST_NAME].strip()} {line_record[LAST_NAME].strip()}" # name == "John Smith"
在此例中,我們可以避免神秘的索引,方法是先使用 slice 函數(shù)命名它們,然后再使用它們。你還可以通過(guò) .start、.stop和 .stop 屬性,來(lái)了解 slice 對(duì)象的更多信息。
11、在運(yùn)行時(shí)提示用戶輸入密碼
許多命令行工具或腳本需要用戶名和密碼才能操作。因此,如果你碰巧寫了這樣的程序,你可能會(huì)發(fā)現(xiàn) getpass 模塊很有用:
import getpass user = getpass.getuser() password = getpass.getpass() # Do Stuff...
這個(gè)非常簡(jiǎn)單的包通過(guò)提取當(dāng)前用戶的登錄名,可以提示用戶輸入密碼。但是須注意,并非每個(gè)系統(tǒng)都支持隱藏密碼。Python 會(huì)嘗試警告你,因此切記在命令行中閱讀警告信息。
12、查找單詞/字符串的相近匹配
現(xiàn)在,關(guān)于 Python 標(biāo)準(zhǔn)庫(kù)中一些晦澀難懂的特性。如果你發(fā)現(xiàn)自己需要使用Levenshtein distance 【2】之類的東西,來(lái)查找某些輸入字符串的相似單詞,那么 Python 的 difflib 會(huì)為你提供支持。
import difflib difflib.get_close_matches( appel , [ ape , apple , peach , puppy ], n=2) # returns [ apple , ape ]
difflib.get_close_matches 會(huì)查找最佳的“足夠好”的匹配。在這里,第一個(gè)參數(shù)與第二個(gè)參數(shù)匹配。我們還可以提供可選參數(shù) n ,該參數(shù)指定要返回的最多匹配結(jié)果。另一個(gè)可選的關(guān)鍵字參數(shù) cutoff (默認(rèn)值為 0.6),可以設(shè)置字符串匹配得分的閾值。
13、使用IP地址
如果你必須使用 Python 做網(wǎng)絡(luò)開(kāi)發(fā),你可能會(huì)發(fā)現(xiàn) ipaddress 模塊非常有用。一種場(chǎng)景是從 CIDR(無(wú)類別域間路由 Classless Inter-Domain Routing)生成一系列 IP 地址:
import ipaddress net = ipaddress.ip_network( 74.125.227.0/29 ) # Works for IPv6 too # IPv4Network( 74.125.227.0/29 ) for addr in net: print(addr) # 74.125.227.0 # 74.125.227.1 # 74.125.227.2 # 74.125.227.3 # ...
另一個(gè)不錯(cuò)的功能是檢查 IP 地址的網(wǎng)絡(luò)成員資格:
ip = ipaddress.ip_address("74.125.227.3") ip in net # True ip = ipaddress.ip_address("74.125.227.12") ip in net # False
還有很多有趣的功能,在這里【3】可以找到,我不再贅述。但是請(qǐng)注意,ipaddress 模塊和其它與網(wǎng)絡(luò)相關(guān)的模塊之間只有有限的互通性。例如,你不能將 IPv4Network 實(shí)例當(dāng)成地址字符串——需要先使用 str 轉(zhuǎn)換它們。
14、在Shell中調(diào)試程序崩潰
如果你是一個(gè)拒絕使用 IDE,并在 Vim 或 Emacs 中進(jìn)行編碼的人,那么你可能會(huì)遇到這樣的情況:擁有在 IDE 中那樣的調(diào)試器會(huì)很有用。
你知道嗎?你有一個(gè)——只要用python3.8 -i 運(yùn)行你的程序——一旦你的程序終止了, -i 會(huì)啟動(dòng)交互式 shell,在那你可以查看所有的變量和調(diào)用函數(shù)。整潔,但是使用實(shí)際的調(diào)試器(pdb )會(huì)如何呢?讓我們用以下程序(script.py ):
def func(): return 0 / 0 func()
并使用python3.8 -i script.py運(yùn)行腳本:
# Script crashes... Traceback (most recent call last): File "script.py", line 4, in <module> func() File "script.py", line 2, in func return 0 / 0 ZeroDivisionError: division by zero >>> import pdb >>> pdb.pm() # Post-mortem debugger > script.py(2)func() -> return 0 / 0 (Pdb)
我們看到了崩潰的地方,現(xiàn)在讓我們?cè)O(shè)置一個(gè)斷點(diǎn):
def func(): breakpoint() # import pdb; pdb.set_trace() return 0 / 0 func()
現(xiàn)在再次運(yùn)行它:
script.py(3)func() -> return 0 / 0 (Pdb) # we start here (Pdb) step ZeroDivisionError: division by zero > script.py(3)func() -> return 0 / 0 (Pdb)
大多數(shù)時(shí)候,打印語(yǔ)句和錯(cuò)誤信息就足以進(jìn)行調(diào)試,但是有時(shí)候,你需要四處摸索,以了解程序內(nèi)部正在發(fā)生的事情。在這些情況下,你可以設(shè)置斷點(diǎn),然后程序執(zhí)行時(shí)將在斷點(diǎn)處停下,你可以檢查程序,例如列出函數(shù)參數(shù)、表達(dá)式求值、列出變量、或如上所示僅作單步執(zhí)行。
pdb 是功能齊全的 Python shell,理論上你可以執(zhí)行任何東西,但是你還需要一些調(diào)試命令,可在此處【4】找到。
15、在一個(gè)類中定義多個(gè)構(gòu)造函數(shù)
函數(shù)重載是編程語(yǔ)言(不含 Python)中非常常見(jiàn)的功能。即使你不能重載正常的函數(shù),你仍然可以使用類方法重載構(gòu)造函數(shù):
import datetime class Date: def __init__(self, year, month, day): self.year = year self.month = month self.day = day @classmethod def today(cls): t = datetime.datetime.now() return cls(t.year, t.month, t.day) d = Date.today() print(f"{d.day}/{d.month}/{d.year}") # 14/9/2019
你可能傾向于將替代構(gòu)造函數(shù)的所有邏輯放入__init__,并使用*args 、**kwargs 和一堆 if 語(yǔ)句,而不是使用類方法來(lái)解決。那可能行得通,但是卻變得難以閱讀和維護(hù)。
因此,我建議將很少的邏輯放入__init__,并在單獨(dú)的方法/構(gòu)造函數(shù)中執(zhí)行所有操作。這樣,對(duì)于類的維護(hù)者和用戶而言,得到的都是干凈的代碼。
16、使用裝飾器緩存函數(shù)調(diào)用
你是否曾經(jīng)編寫過(guò)一種函數(shù),它執(zhí)行昂貴的 I/O 操作或一些相當(dāng)慢的遞歸,而且該函數(shù)可能會(huì)受益于對(duì)其結(jié)果進(jìn)行緩存(存儲(chǔ))?如果你有,那么有簡(jiǎn)單的解決方案,即使用 functools 的lru_cache :
from functools import lru_cache import requests @lru_cache(maxsize=32) def get_with_cache(url): try: r = requests.get(url) return r.text except: return "Not Found" for url in ["https://google.com/", "https://martinheinz.dev/", "https://reddit.com/", "https://google.com/", "https://dev.to/martinheinz", "https://google.com/"]: get_with_cache(url) print(get_with_cache.cache_info()) # CacheInfo(hits=2, misses=4, maxsize=32, currsize=4)
在此例中,我們用了可緩存的 GET 請(qǐng)求(最多 32 個(gè)緩存結(jié)果)。你還可以看到,我們可以使用 cache_info 方法檢查函數(shù)的緩存信息。裝飾器還提供了 clear_cache 方法,用于使緩存結(jié)果無(wú)效。
我還想指出,此函數(shù)不應(yīng)與具有副作用的函數(shù)一起使用,或與每次調(diào)用都創(chuàng)建可變對(duì)象的函數(shù)一起使用。
17、在可迭代對(duì)象中查找最頻繁出現(xiàn)的元素
在列表中查找最常見(jiàn)的元素是非常常見(jiàn)的任務(wù),你可以使用 for 循環(huán)和字典(map),但是這沒(méi)必要,因?yàn)?collections 模塊中有 Counter 類:
from collections import Counter cheese = ["gouda", "brie", "feta", "cream cheese", "feta", "cheddar", "parmesan", "parmesan", "cheddar", "mozzarella", "cheddar", "gouda", "parmesan", "camembert", "emmental", "camembert", "parmesan"] cheese_count = Counter(cheese) print(cheese_count.most_common(3)) # Prints: [( parmesan , 4), ( cheddar , 3), ( gouda , 2)]
實(shí)際上,Counter 只是一個(gè)字典,將元素與出現(xiàn)次數(shù)映射起來(lái),因此你可以將其用作普通字典:
pythonprint(cheese_count["mozzarella"])¨K40Kcheese_count["mozzarella"] += 1print(cheese_count["mozzarella"])¨K41K
除此之外,你還可以使用 update(more_words) 方法輕松添加更多元素。Counter 的另一個(gè)很酷的特性是你可以使用數(shù)學(xué)運(yùn)算(加法和減法)來(lái)組合和減去 Counter 的實(shí)例。
到此,相信大家對(duì)“Python的技巧有哪些”有了更深的了解,不妨來(lái)實(shí)際操作一番吧!這里是億速云網(wǎng)站,更多相關(guān)內(nèi)容可以進(jìn)入相關(guān)頻道進(jìn)行查詢,關(guān)注我們,繼續(xù)學(xué)習(xí)!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。