溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點(diǎn)擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

keras中g(shù)et_value運(yùn)行越來越慢怎么辦

發(fā)布時(shí)間:2021-05-18 15:11:34 來源:億速云 閱讀:123 作者:小新 欄目:開發(fā)技術(shù)

小編給大家分享一下keras中g(shù)et_value運(yùn)行越來越慢怎么辦,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!

keras 深度學(xué)習(xí)框架中g(shù)et_value函數(shù)運(yùn)行越來越慢,內(nèi)存消耗越來越大問題

問題描述

keras中g(shù)et_value運(yùn)行越來越慢怎么辦

如上圖所示,經(jīng)過時(shí)間和內(nèi)存消耗跟蹤測試,發(fā)現(xiàn)是keras.backend.get_value() 函數(shù)導(dǎo)致的程序越來越慢,而且嚴(yán)重的造成內(nèi)存泄露;

查看該函數(shù)內(nèi)部實(shí)現(xiàn),發(fā)現(xiàn)一個(gè)主要核心是x.eval(session=get_session()),該語句可能是導(dǎo)致內(nèi)存泄露和運(yùn)行慢的核心語句; 根據(jù)查看一些博文得到了運(yùn)行得越來越慢的

原因該x.eval函數(shù)會添加新的節(jié)點(diǎn)到tf的圖中;而這也導(dǎo)致了tf的圖越來越大,內(nèi)存泄露;

解決方法

import tensorflow.keras.backend as K

def get_my_session(gpu_fraction=0.1):
    '''Assume that you have 6GB of GPU memory and want to allocate ~2GB'''

    num_threads = os.environ.get('OMP_NUM_THREADS')
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction)

    if num_threads:
        return tf.Session(config=tf.ConfigProto(
            gpu_options=gpu_options, intra_op_parallelism_threads=num_threads))
    else:
        return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

K.set_session(get_my_session())

如上圖所示, 我在使用tensorflow之前(也就是該工程文件前面),對session進(jìn)行自定義,然后用自定義的session設(shè)定keras.backend.set_session();

然后刪除get_value() 函數(shù),直接用get_value()中所使用的執(zhí)行語句x.eval(session=get_my_session());這樣這個(gè)添加節(jié)點(diǎn)導(dǎo)致內(nèi)存泄露的核心語句x.eval()就使用的是該工程統(tǒng)一自定義session,然后用tf.reset_default_graph() 對圖重置就可以了

即上圖問題代碼修改為:

output = ctc_decode(y_pred,input_length=input_length,)
output = output[0][0]
out = output.eval(session=get_my_session())
# 刪除 K.get_value(out[0][0])
tf.reset_default_graph() # 然后重置tf圖,這句很關(guān)鍵

這樣就解決了get_value()導(dǎo)致的越來越慢的問題;

個(gè)人認(rèn)為:這樣可能就不會總是添加新的節(jié)點(diǎn),導(dǎo)致tf圖不斷地?zé)o限變大;而是重復(fù)使用這一個(gè)自定義的節(jié)點(diǎn)。

補(bǔ)充:tensorflow與keras之間版本問題引起get_session問題解決辦法

1.產(chǎn)生報(bào)錯(cuò)原因

import tensorflow.keras.backend as K
def __init__(self, **kwargs):
    self.__dict__.update(self._defaults) # set up default values
    self.__dict__.update(kwargs) # and update with user overrides
    self.class_names = self._get_class()
    self.anchors = self._get_anchors()
    self.sess = K.get_session()

報(bào)錯(cuò)如下:

get_session is not available when using TensorFlow 2.0.

意思是 tf2.0 沒有 get_session

2.解決方案1

import tensorflow.python.keras.backend as K
sess = K.get_session()

3. 解決方案2

import tensorflow as tf
sess = tf.compat.v1.keras.backend.get_session()

之前一直采用方案1 解決,感覺比較方便;但是解決方案1 有其它屬性會丟失問題

比如AttributeError: module ‘keras.backend' has no attribute image_dim_ordering

以上是“keras中g(shù)et_value運(yùn)行越來越慢怎么辦”這篇文章的所有內(nèi)容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內(nèi)容對大家有所幫助,如果還想學(xué)習(xí)更多知識,歡迎關(guān)注億速云行業(yè)資訊頻道!

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI