溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

怎么在R語(yǔ)言中實(shí)現(xiàn)排序

發(fā)布時(shí)間:2021-04-21 15:44:24 來(lái)源:億速云 閱讀:229 作者:Leah 欄目:開(kāi)發(fā)技術(shù)

這篇文章將為大家詳細(xì)講解有關(guān)怎么在R語(yǔ)言中實(shí)現(xiàn)排序,文章內(nèi)容質(zhì)量較高,因此小編分享給大家做個(gè)參考,希望大家閱讀完這篇文章后對(duì)相關(guān)知識(shí)有一定的了解。

什么是R語(yǔ)言

R語(yǔ)言是用于統(tǒng)計(jì)分析、繪圖的語(yǔ)言和操作環(huán)境,屬于GNU系統(tǒng)的一個(gè)自由、免費(fèi)、源代碼開(kāi)放的軟件,它是一個(gè)用于統(tǒng)計(jì)計(jì)算和統(tǒng)計(jì)制圖的優(yōu)秀工具。

首先簡(jiǎn)單介紹一下mtcar數(shù)據(jù)集,mtcar(Motor Trend Car Road Tests)是一個(gè)32行11列的數(shù)據(jù)集,記錄了32種汽車的11種性能,具體數(shù)據(jù)如下:

> mtcars
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

假如我們想挑一款比較省油的車,也就是選一款mpg(每加侖公里數(shù))較高的車。如果只要一個(gè)備選,自然可以使用which.max函數(shù):

> mtcars[which.max(mtcars$mpg), ]
                mpg cyl disp hp drat    wt qsec vs am gear carb
Toyota Corolla 33.9   4 71.1 65 4.22 1.835 19.9  1  1    4    1

如果想要多個(gè)備選呢?例如2個(gè)備選。我們可以將mtcars按mpg從大到小排序,然后列出前兩個(gè):

> db_use <- mtcars[order(mtcars$mpg, decreasing = T), ] 
> db_use
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2

前兩名是:

> db_use[1:2, ]
                mpg cyl disp hp drat    wt  qsec vs am gear carb
Toyota Corolla 33.9   4 71.1 65 4.22 1.835 19.90  1  1    4    1
Fiat 128       32.4   4 78.7 66 4.08 2.200 19.47  1  1    4    1

如果取前3名呢?我們注意到存在并列第3的情況,所以說(shuō)直接取前3行就不合適了。這樣我們可以新設(shè)一列表示mpg的排名(rank),然后取排名小于等于3的數(shù)據(jù)。但是rank函數(shù)是從小到大排序的,我們這里要從大到小排序,需要做一個(gè)簡(jiǎn)單的變換:

> db_use$rank <- nrow(db_use) - rank(db_use$mpg, ties.method = 'max') + 1
> db_use
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb rank
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1    1
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1    2
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2    3
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2    3
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1    5
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2    6

選取前3名:

> db_use[which(db_use$rank<= 3), ]
                mpg cyl disp  hp drat    wt  qsec vs am gear carb rank
Toyota Corolla 33.9   4 71.1  65 4.22 1.835 19.90  1  1    4    1    1
Fiat 128       32.4   4 78.7  66 4.08 2.200 19.47  1  1    4    1    2
Honda Civic    30.4   4 75.7  52 4.93 1.615 18.52  1  1    4    2    3
Lotus Europa   30.4   4 95.1 113 3.77 1.513 16.90  1  1    5    2    3

下面增加一下難度?,F(xiàn)在我們挑選出來(lái)的車都是4缸的,即cyl(氣缸數(shù))為4。我們想在不同氣缸數(shù)的車中都挑一些省油的車做備選,比方說(shuō)在不同氣缸數(shù)的車中挑出各自前3款最省油的車。

同樣,我們需要構(gòu)造一個(gè)新變量表示mpg的排名,只不過(guò)這個(gè)排名是一個(gè)分組排名,即以氣缸數(shù)分組,在氣缸數(shù)相同的車中分別排名。

首先,我們將數(shù)據(jù)按氣缸數(shù)分組排好:

> library(dplyr)
> db_use <- mtcars
> db_use$name <- rownames(db_use)
> db_use <- arrange(db_use, cyl, desc(mpg))
> db_use
    mpg cyl  disp  hp drat    wt  qsec vs am gear carb                name
1  33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1      Toyota Corolla
2  32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1            Fiat 128
3  30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2         Honda Civic
4  30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2        Lotus Europa
5  27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1           Fiat X1-9
6  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2       Porsche 914-2

然后列出各組的組內(nèi)rank:

> rank_group <- aggregate(mpg~cyl, db_use, rank, ties.method = 'max')
> db_use$rank_increase <- unlist(rank_group$mpg)
> db_use
    mpg cyl  disp  hp drat    wt  qsec vs am gear carb                name rank_increase
1  33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1      Toyota Corolla            11
2  32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1            Fiat 128            10
3  30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2         Honda Civic             9
4  30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2        Lotus Europa             9
5  27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1           Fiat X1-9             7
6  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2       Porsche 914-2             6

接著,算出每組各包含多少數(shù)據(jù):

> num_all <- aggregate(mpg~cyl, db_use, length)
> db_use$num_all <- rep(num_all$mpg, num_all$mpg)
> db_use
    mpg cyl  disp  hp drat    wt  qsec vs am gear carb                name rank_increase num_all
1  33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1      Toyota Corolla            11      11
2  32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1            Fiat 128            10      11
3  30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2         Honda Civic             9      11
4  30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2        Lotus Europa             9      11
5  27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1           Fiat X1-9             7      11
6  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2       Porsche 914-2             6      11

最后二者相減得出各組的組內(nèi)從大到小排名,選取排名小于等于3的汽車::

> db_use$rank_decrease <- db_use$num_all - db_use$rank_increase + 1
> db_use[which(db_use$rank_decrease <= 3), ]
    mpg cyl  disp  hp drat    wt  qsec vs am gear carb              name rank_increase num_all rank_decrease
1  33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1    Toyota Corolla            11      11             1
2  32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1          Fiat 128            10      11             2
3  30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2       Honda Civic             9      11             3
4  30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2      Lotus Europa             9      11             3
12 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1    Hornet 4 Drive             7       7             1
13 21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4         Mazda RX4             6       7             2
14 21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4     Mazda RX4 Wag             6       7             2
19 19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2  Pontiac Firebird            14      14             1
20 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2 Hornet Sportabout            13      14             2
21 17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3        Merc 450SL            12      14             3

有時(shí)候我們不會(huì)挑選具體前3名還是前5名的數(shù)據(jù),會(huì)是取一個(gè)百分比,比方說(shuō)在各組內(nèi)挑選前20%最省油的車輛,這個(gè)需求利用前邊的幾個(gè)中間變量新設(shè)一個(gè)百分比變量就能輕松實(shí)現(xiàn):

> db_use[which(db_use$Percent <= 0.2), ]
    mpg cyl  disp  hp drat    wt  qsec vs am gear carb              name rank_increase num_all rank_decrease    Percent
1  33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1    Toyota Corolla            11      11             1 0.09090909
2  32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1          Fiat 128            10      11             2 0.18181818
12 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1    Hornet 4 Drive             7       7             1 0.14285714
19 19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2  Pontiac Firebird            14      14             1 0.07142857
20 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2 Hornet Sportabout            13      14             2 0.14285714

補(bǔ)充:R語(yǔ)言中的排序算法

最近用R語(yǔ)言比較多,所以這次再一次整理一下R語(yǔ)言中的排序算法,本篇文章主要以代碼實(shí)現(xiàn)為主,原理不在此贅述了。

文中如有不正確的地方,歡迎大家批評(píng)指正。

1.測(cè)試數(shù)據(jù)

<span ># 測(cè)試數(shù)組
vector = c(5,34,65,36,67,3,6,43,69,59,25,785,10,11,14)
vector
##  [1]   5  34  65  36  67   3   6  43  69  59  25 785  10  11  14</span>

2.R語(yǔ)言中自帶的排序函數(shù)

在R中,跟排序有關(guān)的函數(shù)主要有三個(gè):sort(),rank(),order()。其中sort(x)是對(duì)向量x進(jìn)行排序,rank()是求秩的函數(shù),它的返回值是這個(gè)向量中對(duì)應(yīng)元素的“排名”,order()的返回值是對(duì)應(yīng)“排名”的元素所在向量中的位置。

sort(vector)
##  [1]   3   5   6  10  11  14  25  34  36  43  59  65  67  69 785
order(vector)
##  [1]  6  1  7 13 14 15 11  2  4  8 10  3  5  9 12
rank(vector)
##  [1]  2  8 12  9 13  1  3 10 14 11  7 15  4  5  6

3.冒泡排序

# bubble sort
bubbleSort = function(vector) {
  n = length(vector)
  for (i in 1:(n-1)) {
    for (j in (i+1):n) {
      if(vector[i]>=vector[j]){
        temp = vector[i]
        vector[i] = vector[j]
        vector[j] = temp
        }
      }
    }
  return(vector)
}
bubbleSort(vector)
##  [1]   3   5   6  10  11  14  25  34  36  43  59  65  67  69 785

4.快速排序

# quick sort
quickSort = function(vector, small, big) {
  left = small
  right = big
  if (left >= right) {
    return(vector)
  }else{
    markValue = vector[left]
    while (left < right) {
      while (left < right && vector[right] >= markValue) {
        right = right - 1
      }
      vector[left] = vector[right]
      while (left < right && vector[left] <= markValue) {
        left = left + 1
      }
      vector[right] = vector[left]
    }
  vector[left] = markValue
  vector = quickSort(vector, small, left - 1)
  vector = quickSort(vector, right + 1, big)
  return(vector)
  }
}
quickSort(vector,1,15)
##  [1]   3   5   6  10  11  14  25  34  36  43  59  65  67  69 785

5.插入排序

# insert sort
insertSort = function(vector){
  n = length(vector)
  for(i in 2:n){
    markValue = vector[i]
    j=i-1
    while(j>0){
      if(vector[j]>markValue){
        vector[j+1] = vector[j]
        vector[j] = markValue
      }
      j=j-1
    }
  }
  return(vector)
}
insertSort(vector)
##  [1]   3   5   6  10  11  14  25  34  36  43  59  65  67  69 785

6.希爾排序

# shell sort
shellSort = function(vector){
   n = length(vector)
   separate = floor(n/2)
   while(separate>0){
     for(i in 1:separate){
       j = i+separate
       while(j<=n){
         m= j- separate
         markVlaue = vector[j]
         while(m>0){
           if(vector[m]>markVlaue){
             vector[m+separate] = vector[m]
             vector[m] = markVlaue
           }
           m = m-separate
         }
         j = j+separate
       }
     }
     separate = floor(separate/2)
   }
   return(vector)
}
shellSort(vector)
##  [1]   3   5   6  10  11  14  25  34  36  43  59  65  67  69 785

7.選擇排序

# select sort
selectSort = function(vector){
  n = length(vector)
  for(i in 1:(n-1)){
    minIndex = i
    for(j in (i+1):n){
      if(vector[minIndex]>vector[j]){
        minIndex = j
      }
    }
    temp = vector[i]
    vector[i] = vector[minIndex]
    vector[minIndex] = temp
  }
  return(vector)
}
selectSort(vector)
##  [1]   3   5   6  10  11  14  25  34  36  43  59  65  67  69 785

8.堆排序

# heap sort
adjustHeap = function(vector,k,n){
  left = 2*k
  right = 2*k+1
  max = k
  if(k<=n/2){
    if(left<=n&&vector[left]>=vector[max]){
      max = left
    }
    if(right<=n&&vector[right]>=vector[max]){
      max = right
    }
    if(max!=k){
      temp = vector[k]
      vector[k] = vector[max]
      vector[max] = temp
      vector = adjustHeap(vector,max,n)
    }
  }
  return(vector)
}
createHeap = function(vector,n){
  for(i in (n/2):1){
    vector = adjustHeap(vector,i,n)
  }
  return(vector)
}
heapSort = function(vector){
  n = length(vector)
  vector = createHeap(vector,n)
  for(i in 1:n){
    temp = vector[n-i+1]
    vector[n-i+1] = vector[1]
    vector[1] = temp
    vector = adjustHeap(vector,1,n-i)
  }
  return(vector)
}

9.歸并排序

# merge sort
combine = function(leftSet,rightSet){
  m = 1
  n = 1
  vectorTemp = c()
  while (m<=length(leftSet)&&n<=length(rightSet)) {
    if(leftSet[m]<=rightSet[n]){
      vectorTemp = append(vectorTemp,leftSet[m])
      m = m+1
    }else{
      vectorTemp = append(vectorTemp,rightSet[n])
      n = n+1
    }
  }
  if(m>length(leftSet)&&n==length(rightSet)){
    vectorTemp = append(vectorTemp,rightSet[n:length(rightSet)])
  }else if(m==length(leftSet)&&n>length(rightSet)){
    vectorTemp = append(vectorTemp,leftSet[m:length(leftSet)])
  }
  return(vectorTemp)
}
mergeSort = function(vector){
  size = length(vector)
  if(size==1){
    return(vector)
  }
    cut = ceiling(size/2)
    leftSet = mergeSort(vector[1:cut])
    rightSet = mergeSort(vector[(cut+1):size])
    vector = combine(leftSet,rightSet)
    return(vector)
}

關(guān)于怎么在R語(yǔ)言中實(shí)現(xiàn)排序就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,可以學(xué)到更多知識(shí)。如果覺(jué)得文章不錯(cuò),可以把它分享出去讓更多的人看到。

向AI問(wèn)一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI