您好,登錄后才能下訂單哦!
本篇文章給大家分享的是有關(guān)怎么在Java項(xiàng)目中實(shí)現(xiàn)一個(gè)矩陣乘法,小編覺得挺實(shí)用的,因此分享給大家學(xué)習(xí),希望大家閱讀完這篇文章后可以有所收獲,話不多說,跟著小編一起來看看吧。
C[1][1] = A[1][0] * B[0][1] + A[1][1] * B[1][1] + A[1][2] * B[2][1] + A[1][3] * B[3][1] + A[1][4] * B[4][1]
??而用Java實(shí)現(xiàn)該過程的傳統(tǒng)方法就是按照該規(guī)則實(shí)現(xiàn)一個(gè)三重循環(huán),把各項(xiàng)乘積累加:
public int[][] multiply(int[][] mat1, int[][] mat2){ int m = mat1.length, n = mat2[0].length; int[][] mat = new int[m][n]; for(int i = 0; i < m; i++){ for(int j = 0; j < n; j++){ for(int k = 0; k < mat1[0].length; k++){ mat[i][j] += mat1[i][k] * mat2[k][j]; } } } return mat; }
??可以看出該方法的時(shí)間復(fù)雜度為O(n3),當(dāng)矩陣維數(shù)比較大的時(shí)候程序就很容易超時(shí)。
??Strassen算法是由Volker Strassen在1966年提出的第一個(gè)時(shí)間復(fù)雜度低于O(n³)的矩陣乘法算法,其主要思想是通過分治來實(shí)現(xiàn)矩陣乘法的快速運(yùn)算,計(jì)算過程如圖所示:
將一次矩陣乘法拆分成多個(gè)乘法與加法的結(jié)合
??為什么這個(gè)方法會(huì)更快呢,我們知道,按照傳統(tǒng)的矩陣乘法:
C11 = A11 * B11 + A12 * B21
C12 = A11 * B12 + A12 * B22
C21 = A21 * B11 + A22 * B21
C22 = A21 * B12 + A22 * B22
??我們需要8次矩陣乘法和4次矩陣加法,正是這8次乘法最耗時(shí);而Strassen方法只需要7次矩陣乘法,盡管代價(jià)是矩陣加法次數(shù)變?yōu)?8次,但是基于數(shù)量級(jí)考慮,18次加法仍然快于1次乘法。
??當(dāng)然,Strassen算法的代碼實(shí)現(xiàn)也比傳統(tǒng)算法復(fù)雜許多,這里附上另一個(gè)大神寫的java實(shí)現(xiàn)(原文鏈接:https://www.jb51.net/article/205375.htm):
public class Matrix { private final Matrix[] _matrixArray; private final int n; private int element; public Matrix(int n) { this.n = n; if (n != 1) { this._matrixArray = new Matrix[4]; for (int i = 0; i < 4; i++) { this._matrixArray[i] = new Matrix(n / 2); } } else { this._matrixArray = null; } } private Matrix(int n, boolean needInit) { this.n = n; if (n != 1) { this._matrixArray = new Matrix[4]; } else { this._matrixArray = null; } } public void set(int i, int j, int a) { if (n == 1) { element = a; } else { int size = n / 2; this._matrixArray[(i / size) * 2 + (j / size)].set(i % size, j % size, a); } } public Matrix multi(Matrix m) { Matrix result = null; if (n == 1) { result = new Matrix(1); result.set(0, 0, (element * m.element)); } else { result = new Matrix(n, false); result._matrixArray[0] = P5(m).add(P4(m)).minus(P2(m)).add(P6(m)); result._matrixArray[1] = P1(m).add(P2(m)); result._matrixArray[2] = P3(m).add(P4(m)); result._matrixArray[3] = P5(m).add(P1(m)).minus(P3(m)).minus(P7(m)); } return result; } public Matrix add(Matrix m) { Matrix result = null; if (n == 1) { result = new Matrix(1); result.set(0, 0, (element + m.element)); } else { result = new Matrix(n, false); result._matrixArray[0] = this._matrixArray[0].add(m._matrixArray[0]); result._matrixArray[1] = this._matrixArray[1].add(m._matrixArray[1]); result._matrixArray[2] = this._matrixArray[2].add(m._matrixArray[2]); result._matrixArray[3] = this._matrixArray[3].add(m._matrixArray[3]);; } return result; } public Matrix minus(Matrix m) { Matrix result = null; if (n == 1) { result = new Matrix(1); result.set(0, 0, (element - m.element)); } else { result = new Matrix(n, false); result._matrixArray[0] = this._matrixArray[0].minus(m._matrixArray[0]); result._matrixArray[1] = this._matrixArray[1].minus(m._matrixArray[1]); result._matrixArray[2] = this._matrixArray[2].minus(m._matrixArray[2]); result._matrixArray[3] = this._matrixArray[3].minus(m._matrixArray[3]);; } return result; } protected Matrix P1(Matrix m) { return _matrixArray[0].multi(m._matrixArray[1]).minus(_matrixArray[0].multi(m._matrixArray[3])); } protected Matrix P2(Matrix m) { return _matrixArray[0].multi(m._matrixArray[3]).add(_matrixArray[1].multi(m._matrixArray[3])); } protected Matrix P3(Matrix m) { return _matrixArray[2].multi(m._matrixArray[0]).add(_matrixArray[3].multi(m._matrixArray[0])); } protected Matrix P4(Matrix m) { return _matrixArray[3].multi(m._matrixArray[2]).minus(_matrixArray[3].multi(m._matrixArray[0])); } protected Matrix P5(Matrix m) { return (_matrixArray[0].add(_matrixArray[3])).multi(m._matrixArray[0].add(m._matrixArray[3])); } protected Matrix P6(Matrix m) { return (_matrixArray[1].minus(_matrixArray[3])).multi(m._matrixArray[2].add(m._matrixArray[3])); } protected Matrix P7(Matrix m) { return (_matrixArray[0].minus(_matrixArray[2])).multi(m._matrixArray[0].add(m._matrixArray[1])); } public int get(int i, int j) { if (n == 1) { return element; } else { int size = n / 2; return this._matrixArray[(i / size) * 2 + (j / size)].get(i % size, j % size); } } public void display() { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { System.out.print(get(i, j)); System.out.print(" "); } System.out.println(); } } public static void main(String[] args) { Matrix m = new Matrix(2); Matrix n = new Matrix(2); m.set(0, 0, 1); m.set(0, 1, 3); m.set(1, 0, 5); m.set(1, 1, 7); n.set(0, 0, 8); n.set(0, 1, 4); n.set(1, 0, 6); n.set(1, 1, 2); Matrix res = m.multi(n); res.display(); } }
以上就是怎么在Java項(xiàng)目中實(shí)現(xiàn)一個(gè)矩陣乘法,小編相信有部分知識(shí)點(diǎn)可能是我們?nèi)粘9ぷ鲿?huì)見到或用到的。希望你能通過這篇文章學(xué)到更多知識(shí)。更多詳情敬請(qǐng)關(guān)注億速云行業(yè)資訊頻道。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。