溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點(diǎn)擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

使用python如何實(shí)現(xiàn)粒子群算法

發(fā)布時(shí)間:2020-10-27 21:19:54 來源:億速云 閱讀:261 作者:Leah 欄目:開發(fā)技術(shù)

使用python如何實(shí)現(xiàn)粒子群算法?很多新手對此不是很清楚,為了幫助大家解決這個難題,下面小編將為大家詳細(xì)講解,有這方面需求的人可以來學(xué)習(xí)下,希望你能有所收獲。

粒子群算法

粒子群算法源于復(fù)雜適應(yīng)系統(tǒng)(Complex Adaptive System,CAS)。CAS理論于1994年正式提出,CAS中的成員稱為主體。比如研究鳥群系統(tǒng),每個鳥在這個系統(tǒng)中就稱為主體。主體有適應(yīng)性,它能夠與環(huán)境及其他的主體進(jìn)行交流,并且根據(jù)交流的過程“學(xué)習(xí)”或“積累經(jīng)驗(yàn)”改變自身結(jié)構(gòu)與行為。整個系統(tǒng)的演變或進(jìn)化包括:新層次的產(chǎn)生(小鳥的出生);分化和多樣性的出現(xiàn)(鳥群中的鳥分成許多小的群);新的主題的出現(xiàn)(鳥尋找食物過程中,不斷發(fā)現(xiàn)新的食物)。

PSO初始化為一群隨機(jī)粒子(隨機(jī)解)。然后通過迭代找到最優(yōu)解。在每一次的迭代中,粒子通過跟蹤兩個“極值”(pbest,gbest)來更新自己。
在找到這兩個最優(yōu)值后,粒子通過下面的公式來更新自己的速度和位置。

使用python如何實(shí)現(xiàn)粒子群算法

使用python如何實(shí)現(xiàn)粒子群算法

i 表示第 i 個粒子, d 表示粒子的第 d 個維度。r1, r2 表示兩個位于 [0, 1] 的隨機(jī)數(shù)(對于一個粒子的不同維度,r1, r2 的值不同)。pbest[i] 是指粒子取得最高(低)適應(yīng)度時(shí)的位置,gbest[i] 指的是整個系統(tǒng)取得最高(低)適應(yīng)度時(shí)的位置。

實(shí)踐

我們用 PSO 算法求解如下函數(shù)的最小值

使用python如何實(shí)現(xiàn)粒子群算法

可以在空間畫出圖像

使用python如何實(shí)現(xiàn)粒子群算法

下圖是使用 5 個粒子的收斂情況

使用python如何實(shí)現(xiàn)粒子群算法

可以看到,fitness 在第 12 輪就幾乎收斂到 -10.0。

下面是完整代碼

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D


INF = 1e5

def plot_cost_func():
  """畫出適應(yīng)度函數(shù)"""
  fig = plt.figure()
  ax = Axes3D(fig)
  X = np.arange(-4, 4, 0.25)
  Y = np.arange(-4, 4, 0.25)
  X, Y = np.meshgrid(X, Y)
  Z = (X**2 + Y**2) - 10
  ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
  plt.show()

def fitness(x):
  return x[0]**2 + x[1]**2 - 10

class PSOSolver(object):
  def __init__(self, n_iter, weight=0.5, c1=2, c2=2, n_particle=5):
    self.n_iter = n_iter
    self.weight = weight
    self.c1 = c1
    self.c2 = c2
    self.n_particle = n_particle
    self.gbest = np.random.rand(2)
    # gbest 對應(yīng)的函數(shù)值
    self.gbest_fit = fitness(self.gbest)
    # 將位置初始化到 [-5, 5]
    self.location = 10 * np.random.rand(n_particle, 2) - 5
    # 將速度初始化到 [-1, 1]
    self.velocity = 2 * np.random.rand(n_particle, 2) - 1
    self.pbest_fit = np.tile(INF, n_particle)
    self.pbest = np.zeros((n_particle, 2))
    # 記錄每一步的最優(yōu)值
    self.best_fitness = []
  
  def new_velocity(self, i):
    r = np.random.rand(2, 2)
    v = self.velocity[i]
    x = self.location[i]
    pbest = self.pbest[i]
    return self.weight * v + self.c1 * r[0] * (pbest - x) + \
        self.c2 * r[1] * (self.gbest - x)

  def solve(self):
    for it in range(self.n_iter):
      for i in range(self.n_particle):
        v = self.new_velocity(i)
        x = self.location[i] + v
        fit_i = fitness(x)
        if fit_i < self.pbest_fit[i]:
          self.pbest_fit[i] = fit_i
          self.pbest[i] = x
          if fit_i < self.gbest_fit:
            self.gbest_fit = fit_i
            self.gbest = x
        self.velocity[i] = v
        self.location[i] = x
      self.best_fitness.append(self.gbest_fit)

  
if __name__ == '__main__':
  plot_cost_func()
  n_iter = 20
  s = PSOSolver(n_iter)
  s.solve()
  print(s.gbest_fit)
  plt.title("Fitness Curve")
  plt.xlabel("iter")
  plt.ylabel("fitness")
  plt.plot(np.arange(n_iter), np.array(s.best_fitness))
  plt.show()

看完上述內(nèi)容是否對您有幫助呢?如果還想對相關(guān)知識有進(jìn)一步的了解或閱讀更多相關(guān)文章,請關(guān)注億速云行業(yè)資訊頻道,感謝您對億速云的支持。

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI