您好,登錄后才能下訂單哦!
如何安裝和使用PyTorch?針對這個問題,這篇文章詳細介紹了相對應的分析和解答,希望可以幫助更多想解決這個問題的小伙伴找到更簡單易行的方法。
什么要學習PyTorch
有的人總是選擇,選擇的人最多的框架,來作為自己的初學框架,比如Tensorflow
,但是大多論文的實現(xiàn)都是基于PyTorch
的,如果我們要深入論文的細節(jié),就必須選擇學習入門PyTorch
安裝PyTorch
一行命令即可 官網
pip install torch===1.6.0 torchvision===0.7.0 - https://download.pytorch.org/whl/torch_stable.html
時間較久,耐心等待
測試自己是否安裝成功
運行命令測試
import torch x = torch.rand(5,3) print(x)
輸出
tensor([[0.5096, 0.1209, 0.7721],
[0.9486, 0.8676, 0.2157],
[0.0586, 0.3467, 0.5015],
[0.9470, 0.5654, 0.9317],
[0.2127, 0.2386, 0.0629]])
開始學習PyTorch
不初始化的創(chuàng)建張量
import torch x = torch.empty([5,5]) print(x)
輸出
tensor([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
隨機創(chuàng)建一個0-1的張量
import torch x = torch.rand(5,5) print(x)
輸出
tensor([[0.3369, 0.5339, 0.8419, 0.6857, 0.6241],
[0.4991, 0.1691, 0.8356, 0.4574, 0.0395],
[0.9714, 0.2975, 0.9322, 0.5213, 0.8509],
[0.3037, 0.8690, 0.3481, 0.2538, 0.9513],
[0.0156, 0.9516, 0.3674, 0.1831, 0.6466]])
創(chuàng)建全為0的張量
import torch x = torch.zeros(5,5, dtype=torch.float32) print(x)
創(chuàng)建的時候可以通過dtype
指定數據類型
輸出
tensor([[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])
使用數據來直接創(chuàng)建張量
import torch x = torch.zeros([5,5], dtype=torch.float32) print(x)
輸出
tensor([5., 5.])
使用原有tensor
創(chuàng)建新的tensor
import torch x = torch.tensor([5,5], dtype=torch.float32) x = x.new_zeros(5, 3) y = torch.rand_like(x) print(x) print(y)
輸出
tensor([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
tensor([[0.5552, 0.3333, 0.0426],
[0.3861, 0.3945, 0.6658],
[0.6978, 0.3508, 0.4813],
[0.8193, 0.2274, 0.8384],
[0.9360, 0.9226, 0.1453]])
觀察tensor
的維度信息
x = torch.rand(3,3) x.size()
輸出
torch.Size([3, 3])
一些簡單的運算
x = torch.tensor([1]) y = torch.tensor([3]) ''' 方式1 ''' z = x + y ''' 方式2 ''' z = torch.add(x, y) ''' 方式3 ''' result = torch.empty(1) # 不初始化數據 torch.add(x, y, out=result) # 將結果返回到result中 ''' 方式4 ''' x.add_(y)
輸出
tensor([4])
索引操作
x = torch.rand(5,5) x[:,:] x[1,:] x[:,1] x[1,1]
分別輸出
tensor([[0.4012, 0.2604, 0.1720, 0.0996, 0.7806],
[0.8734, 0.9087, 0.4828, 0.3543, 0.2375],
[0.0924, 0.9040, 0.4408, 0.9758, 0.2250],
[0.7179, 0.7244, 0.6165, 0.1142, 0.7363],
[0.8504, 0.0391, 0.0753, 0.4530, 0.7372]])
tensor([0.8734, 0.9087, 0.4828, 0.3543, 0.2375])
tensor([0.2604, 0.9087, 0.9040, 0.7244, 0.0391])
tensor(0.9087)
維度變換
x = torch.rand(4,4) x.view(16) x.view(8,2) x.view(-1,8)
分別輸出
tensor([0.9277, 0.9547, 0.9487, 0.9841, 0.4114, 0.1693, 0.8691, 0.3954, 0.4679,
0.7914, 0.7456, 0.0522, 0.0043, 0.2097, 0.5932, 0.9797])
tensor([[0.9277, 0.9547],
[0.9487, 0.9841],
[0.4114, 0.1693],
[0.8691, 0.3954],
[0.4679, 0.7914],
[0.7456, 0.0522],
[0.0043, 0.2097],
[0.5932, 0.9797]])
tensor([[0.9277, 0.9547, 0.9487, 0.9841, 0.4114, 0.1693, 0.8691, 0.3954],
[0.4679, 0.7914, 0.7456, 0.0522, 0.0043, 0.2097, 0.5932, 0.9797]])
關于如何安裝和使用PyTorch問題的解答就分享到這里了,希望以上內容可以對大家有一定的幫助,如果你還有很多疑惑沒有解開,可以關注億速云行業(yè)資訊頻道了解更多相關知識。
免責聲明:本站發(fā)布的內容(圖片、視頻和文字)以原創(chuàng)、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。