溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

怎么在Python使用pandas實(shí)現(xiàn)差分運(yùn)算

發(fā)布時(shí)間:2021-03-25 17:12:16 來源:億速云 閱讀:372 作者:Leah 欄目:開發(fā)技術(shù)

怎么在Python使用pandas實(shí)現(xiàn)差分運(yùn)算?針對(duì)這個(gè)問題,這篇文章詳細(xì)介紹了相對(duì)應(yīng)的分析和解答,希望可以幫助更多想解決這個(gè)問題的小伙伴找到更簡(jiǎn)單易行的方法。

如下所示:

>>> import pandas as pd
>>> import numpy as np

# 生成模擬數(shù)據(jù)
>>> df = pd.DataFrame({'a':np.random.randint(1, 100, 10),\
     'b':np.random.randint(1, 100, 10)},\
    index=map(str, range(10)))
>>> df
    a    b
0  21  54
1  53  28
2  18  87
3  56  40
4  62  34
5  74  10
6   7  78
7  58  79
8  66  80
9  30  21

# 縱向一階差分,當(dāng)前行減去上一行
>>> df.diff()
      a      b
0   NaN   NaN
1  32.0 -26.0
2 -35.0  59.0
3  38.0 -47.0
4   6.0  -6.0
5  12.0 -24.0
6 -67.0  68.0
7  51.0   1.0
8   8.0   1.0
9 -36.0 -59.0

# 橫向一階差分,當(dāng)前列減去左邊的列
>>> df.diff(axis=1)
    a      b
0 NaN  33.0
1 NaN -25.0
2 NaN  69.0
3 NaN -16.0
4 NaN -28.0
5 NaN -64.0
6 NaN  71.0
7 NaN  21.0
8 NaN  14.0
9 NaN  -9.0

# 縱向二階差分
>>> df.diff(periods=2)
      a      b
0   NaN   NaN
1   NaN   NaN
2  -3.0  33.0
3   3.0  12.0
4  44.0 -53.0
5  18.0 -30.0
6 -55.0  44.0
7 -16.0  69.0
8  59.0   2.0
9 -28.0 -58.0

# 縱向二階差分,丟棄空值
>>> df.diff(periods=2).dropna()
      a     b
2  -3.0  33.0
3   3.0  12.0
4  44.0 -53.0
5  18.0 -30.0
6 -55.0  44.0
7 -16.0  69.0
8  59.0   2.0
9 -28.0 -58.0

關(guān)于怎么在Python使用pandas實(shí)現(xiàn)差分運(yùn)算問題的解答就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,如果你還有很多疑惑沒有解開,可以關(guān)注億速云行業(yè)資訊頻道了解更多相關(guān)知識(shí)。

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI