您好,登錄后才能下訂單哦!
『寫在前面』
以CTC Beam search decoder為例,簡(jiǎn)單整理一下TensorFlow實(shí)現(xiàn)自定義Op的操作流程。
基本的流程
1. 定義Op接口
#include "tensorflow/core/framework/op.h" REGISTER_OP("Custom") .Input("custom_input: int32") .Output("custom_output: int32");
2. 為Op實(shí)現(xiàn)Compute操作(CPU)或?qū)崿F(xiàn)kernel(GPU)
#include "tensorflow/core/framework/op_kernel.h" using namespace tensorflow; class CustomOp : public OpKernel{ public: explicit CustomOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* context) override { // 獲取輸入 tensor. const Tensor& input_tensor = context->input(0); auto input = input_tensor.flat<int32>(); // 創(chuàng)建一個(gè)輸出 tensor. Tensor* output_tensor = NULL; OP_REQUIRES_OK(context, context->allocate_output(0, input_tensor.shape(), &output_tensor)); auto output = output_tensor->template flat<int32>(); //進(jìn)行具體的運(yùn)算,操作input和output //…… } };
3. 將實(shí)現(xiàn)的kernel注冊(cè)到TensorFlow系統(tǒng)中
REGISTER_KERNEL_BUILDER(Name("Custom").Device(DEVICE_CPU), CustomOp);
CTCBeamSearchDecoder自定義
該Op對(duì)應(yīng)TensorFlow中的源碼部分
Op接口的定義:
tensorflow-master/tensorflow/core/ops/ctc_ops.cc
CTCBeamSearchDecoder本身的定義:
tensorflow-master/tensorflow/core/util/ctc/ctc_beam_search.cc
Op-Class的封裝與Op注冊(cè):
tensorflow-master/tensorflow/core/kernels/ctc_decoder_ops.cc
基于源碼修改的Op
#include <algorithm> #include <vector> #include <cmath> #include "tensorflow/core/util/ctc/ctc_beam_search.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/kernels/bounds_check.h" namespace tf = tensorflow; using tf::shape_inference::DimensionHandle; using tf::shape_inference::InferenceContext; using tf::shape_inference::ShapeHandle; using namespace tensorflow; REGISTER_OP("CTCBeamSearchDecoderWithParam") .Input("inputs: float") .Input("sequence_length: int32") .Attr("beam_width: int >= 1") .Attr("top_paths: int >= 1") .Attr("merge_repeated: bool = true") //新添加了兩個(gè)參數(shù) .Attr("label_selection_size: int >= 0 = 0") .Attr("label_selection_margin: float") .Output("decoded_indices: top_paths * int64") .Output("decoded_values: top_paths * int64") .Output("decoded_shape: top_paths * int64") .Output("log_probability: float") .SetShapeFn([](InferenceContext* c) { ShapeHandle inputs; ShapeHandle sequence_length; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 3, &inputs)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &sequence_length)); // Get batch size from inputs and sequence_length. DimensionHandle batch_size; TF_RETURN_IF_ERROR( c->Merge(c->Dim(inputs, 1), c->Dim(sequence_length, 0), &batch_size)); int32 top_paths; TF_RETURN_IF_ERROR(c->GetAttr("top_paths", &top_paths)); // Outputs. int out_idx = 0; for (int i = 0; i < top_paths; ++i) { // decoded_indices c->set_output(out_idx++, c->Matrix(InferenceContext::kUnknownDim, 2)); } for (int i = 0; i < top_paths; ++i) { // decoded_values c->set_output(out_idx++, c->Vector(InferenceContext::kUnknownDim)); } ShapeHandle shape_v = c->Vector(2); for (int i = 0; i < top_paths; ++i) { // decoded_shape c->set_output(out_idx++, shape_v); } c->set_output(out_idx++, c->Matrix(batch_size, top_paths)); return Status::OK(); }); typedef Eigen::ThreadPoolDevice CPUDevice; inline float RowMax(const TTypes<float>::UnalignedConstMatrix& m, int r, int* c) { *c = 0; CHECK_LT(0, m.dimension(1)); float p = m(r, 0); for (int i = 1; i < m.dimension(1); ++i) { if (m(r, i) > p) { p = m(r, i); *c = i; } } return p; } class CTCDecodeHelper { public: CTCDecodeHelper() : top_paths_(1) {} inline int GetTopPaths() const { return top_paths_; } void SetTopPaths(int tp) { top_paths_ = tp; } Status ValidateInputsGenerateOutputs( OpKernelContext* ctx, const Tensor** inputs, const Tensor** seq_len, Tensor** log_prob, OpOutputList* decoded_indices, OpOutputList* decoded_values, OpOutputList* decoded_shape) const { Status status = ctx->input("inputs", inputs); if (!status.ok()) return status; status = ctx->input("sequence_length", seq_len); if (!status.ok()) return status; const TensorShape& inputs_shape = (*inputs)->shape(); if (inputs_shape.dims() != 3) { return errors::InvalidArgument("inputs is not a 3-Tensor"); } const int64 max_time = inputs_shape.dim_size(0); const int64 batch_size = inputs_shape.dim_size(1); if (max_time == 0) { return errors::InvalidArgument("max_time is 0"); } if (!TensorShapeUtils::IsVector((*seq_len)->shape())) { return errors::InvalidArgument("sequence_length is not a vector"); } if (!(batch_size == (*seq_len)->dim_size(0))) { return errors::FailedPrecondition( "len(sequence_length) != batch_size. ", "len(sequence_length): ", (*seq_len)->dim_size(0), " batch_size: ", batch_size); } auto seq_len_t = (*seq_len)->vec<int32>(); for (int b = 0; b < batch_size; ++b) { if (!(seq_len_t(b) <= max_time)) { return errors::FailedPrecondition("sequence_length(", b, ") <= ", max_time); } } Status s = ctx->allocate_output( "log_probability", TensorShape({batch_size, top_paths_}), log_prob); if (!s.ok()) return s; s = ctx->output_list("decoded_indices", decoded_indices); if (!s.ok()) return s; s = ctx->output_list("decoded_values", decoded_values); if (!s.ok()) return s; s = ctx->output_list("decoded_shape", decoded_shape); if (!s.ok()) return s; return Status::OK(); } // sequences[b][p][ix] stores decoded value "ix" of path "p" for batch "b". Status StoreAllDecodedSequences( const std::vector<std::vector<std::vector<int> > >& sequences, OpOutputList* decoded_indices, OpOutputList* decoded_values, OpOutputList* decoded_shape) const { // Calculate the total number of entries for each path const int64 batch_size = sequences.size(); std::vector<int64> num_entries(top_paths_, 0); // Calculate num_entries per path for (const auto& batch_s : sequences) { CHECK_EQ(batch_s.size(), top_paths_); for (int p = 0; p < top_paths_; ++p) { num_entries[p] += batch_s[p].size(); } } for (int p = 0; p < top_paths_; ++p) { Tensor* p_indices = nullptr; Tensor* p_values = nullptr; Tensor* p_shape = nullptr; const int64 p_num = num_entries[p]; Status s = decoded_indices->allocate(p, TensorShape({p_num, 2}), &p_indices); if (!s.ok()) return s; s = decoded_values->allocate(p, TensorShape({p_num}), &p_values); if (!s.ok()) return s; s = decoded_shape->allocate(p, TensorShape({2}), &p_shape); if (!s.ok()) return s; auto indices_t = p_indices->matrix<int64>(); auto values_t = p_values->vec<int64>(); auto shape_t = p_shape->vec<int64>(); int64 max_decoded = 0; int64 offset = 0; for (int64 b = 0; b < batch_size; ++b) { auto& p_batch = sequences[b][p]; int64 num_decoded = p_batch.size(); max_decoded = std::max(max_decoded, num_decoded); std::copy_n(p_batch.begin(), num_decoded, &values_t(offset)); for (int64 t = 0; t < num_decoded; ++t, ++offset) { indices_t(offset, 0) = b; indices_t(offset, 1) = t; } } shape_t(0) = batch_size; shape_t(1) = max_decoded; } return Status::OK(); } private: int top_paths_; TF_DISALLOW_COPY_AND_ASSIGN(CTCDecodeHelper); }; // CTC beam search class CTCBeamSearchDecoderWithParamOp : public OpKernel { public: explicit CTCBeamSearchDecoderWithParamOp(OpKernelConstruction* ctx) : OpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr("merge_repeated", &merge_repeated_)); OP_REQUIRES_OK(ctx, ctx->GetAttr("beam_width", &beam_width_)); //從參數(shù)列表中讀取新添的兩個(gè)參數(shù) OP_REQUIRES_OK(ctx, ctx->GetAttr("label_selection_size", &label_selection_size)); OP_REQUIRES_OK(ctx, ctx->GetAttr("label_selection_margin", &label_selection_margin)); int top_paths; OP_REQUIRES_OK(ctx, ctx->GetAttr("top_paths", &top_paths)); decode_helper_.SetTopPaths(top_paths); } void Compute(OpKernelContext* ctx) override { const Tensor* inputs; const Tensor* seq_len; Tensor* log_prob = nullptr; OpOutputList decoded_indices; OpOutputList decoded_values; OpOutputList decoded_shape; OP_REQUIRES_OK(ctx, decode_helper_.ValidateInputsGenerateOutputs( ctx, &inputs, &seq_len, &log_prob, &decoded_indices, &decoded_values, &decoded_shape)); auto inputs_t = inputs->tensor<float, 3>(); auto seq_len_t = seq_len->vec<int32>(); auto log_prob_t = log_prob->matrix<float>(); const TensorShape& inputs_shape = inputs->shape(); const int64 max_time = inputs_shape.dim_size(0); const int64 batch_size = inputs_shape.dim_size(1); const int64 num_classes_raw = inputs_shape.dim_size(2); OP_REQUIRES( ctx, FastBoundsCheck(num_classes_raw, std::numeric_limits<int>::max()), errors::InvalidArgument("num_classes cannot exceed max int")); const int num_classes = static_cast<const int>(num_classes_raw); log_prob_t.setZero(); std::vector<TTypes<float>::UnalignedConstMatrix> input_list_t; for (std::size_t t = 0; t < max_time; ++t) { input_list_t.emplace_back(inputs_t.data() + t * batch_size * num_classes, batch_size, num_classes); } ctc::CTCBeamSearchDecoder<> beam_search(num_classes, beam_width_, &beam_scorer_, 1 /* batch_size */, merge_repeated_); //使用傳入的兩個(gè)參數(shù)進(jìn)行Set beam_search.SetLabelSelectionParameters(label_selection_size, label_selection_margin); Tensor input_chip(DT_FLOAT, TensorShape({num_classes})); auto input_chip_t = input_chip.flat<float>(); std::vector<std::vector<std::vector<int> > > best_paths(batch_size); std::vector<float> log_probs; // Assumption: the blank index is num_classes - 1 for (int b = 0; b < batch_size; ++b) { auto& best_paths_b = best_paths[b]; best_paths_b.resize(decode_helper_.GetTopPaths()); for (int t = 0; t < seq_len_t(b); ++t) { input_chip_t = input_list_t[t].chip(b, 0); auto input_bi = Eigen::Map<const Eigen::ArrayXf>(input_chip_t.data(), num_classes); beam_search.Step(input_bi); } OP_REQUIRES_OK( ctx, beam_search.TopPaths(decode_helper_.GetTopPaths(), &best_paths_b, &log_probs, merge_repeated_)); beam_search.Reset(); for (int bp = 0; bp < decode_helper_.GetTopPaths(); ++bp) { log_prob_t(b, bp) = log_probs[bp]; } } OP_REQUIRES_OK(ctx, decode_helper_.StoreAllDecodedSequences( best_paths, &decoded_indices, &decoded_values, &decoded_shape)); } private: CTCDecodeHelper decode_helper_; ctc::CTCBeamSearchDecoder<>::DefaultBeamScorer beam_scorer_; bool merge_repeated_; int beam_width_; //新添兩個(gè)數(shù)據(jù)成員,用于存儲(chǔ)新加的參數(shù) int label_selection_size; float label_selection_margin; TF_DISALLOW_COPY_AND_ASSIGN(CTCBeamSearchDecoderWithParamOp); }; REGISTER_KERNEL_BUILDER(Name("CTCBeamSearchDecoderWithParam").Device(DEVICE_CPU), CTCBeamSearchDecoderWithParamOp);
將自定義的Op編譯成.so文件
在tensorflow-master目錄下新建一個(gè)文件夾custom_op
cd custom_op
新建一個(gè)BUILD文件,并在其中添加如下代碼:
cc_library( name = "ctc_decoder_with_param", srcs = [ "new_beamsearch.cc" ] + glob(["boost_locale/**/*.hpp"]), includes = ["boost_locale"], copts = ["-std=c++11"], deps = ["http://tensorflow/core:core", "http://tensorflow/core/util/ctc", "http://third_party/eigen3", ], )
編譯過程:
1. cd 到 tensorflow-master 目錄下
2. bazel build -c opt --copt=-O3 //tensorflow:libtensorflow_cc.so //custom_op:ctc_decoder_with_param
3. bazel-bin/custom_op 目錄下生成 libctc_decoder_with_param.so
在訓(xùn)練(預(yù)測(cè))程序中使用自定義的Op
在程序中定義如下的方法:
decode_param_op_module = tf.load_op_library('libctc_decoder_with_param.so') def decode_with_param(inputs, sequence_length, beam_width=100, top_paths=1, merge_repeated=True): decoded_ixs, decoded_vals, decoded_shapes, log_probabilities = ( decode_param_op_module.ctc_beam_search_decoder_with_param( inputs, sequence_length, beam_width=beam_width, top_paths=top_paths, merge_repeated=merge_repeated, label_selection_size=40, label_selection_margin=0.99)) return ( [tf.SparseTensor(ix, val, shape) for (ix, val, shape) in zip(decoded_ixs, decoded_vals, decoded_shapes)], log_probabilities)
然后就可以像使用tf.nn.ctc_beam_search_decoder一樣使用該Op了。
以上這篇TensorFlow實(shí)現(xiàn)自定義Op方式就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持億速云。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。