您好,登錄后才能下訂單哦!
采用最小二乘的求逆方法在大部分情況下是低效率的。特別地,當局鎮(zhèn)非常大時效率更低。另外一種實現(xiàn)方法是矩陣分解,此方法使用tensorflow內(nèi)建的Cholesky矩陣分解法。Cholesky矩陣分解法把一個矩陣分解為上三角矩陣和下三角矩陣,L和L'。求解Ax=b,改寫成LL'=b。首先求解Ly=b,然后求解L'x=y得到系數(shù)矩陣。
1. 導入編程庫,初始化計算圖,生成數(shù)據(jù)集。接著獲取矩陣A和b。
>>> import matplotlib.pyplot as plt >>> import numpy as np >>> import tensorflow as tf >>> from tensorflow.python.framework import ops >>> ops.reset_default_graph() >>> sess=tf.Session() >>> x_vals=np.linspace(0,10,100) >>> y_vals=x_vals+np.random.normal(0,1,100) >>> x_vals_column=np.transpose(np.matrix(x_vals)) >>> ones_column=np.transpose(np.matrix(np.repeat(1,100))) >>> A=np.column_stack((x_vals_column,ones_column)) >>> b=np.transpose(np.matrix(y_vals)) >>> A_tensor=tf.constant(A) >>> b_tensor=tf.constant(b)
2. 找到方陣的Cholesky矩陣分解。
注意:tensorflow的cholesky()函數(shù)僅僅返回矩陣分解的下三角矩陣,因為上三角矩陣是下三角矩陣的轉置矩陣。
>>> tA_A=tf.matmul(tf.transpose(A_tensor),A_tensor) >>> L=tf.cholesky(tA_A) >>> tA_b=tf.matmul(tf.transpose(A_tensor),b) >>> sol1=tf.matrix_solve(L,tA_b) >>> sol2=tf.matrix_solve(tf.transpose(L),sol1)
3. 抽取系數(shù)
>>> solution_eval=sess.run(sol2) >>> solution_eval array([[1.01379067], [0.02290901]]) >>> slope=solution_eval[0][0] >>> y_intercept=solution_eval[1][0] >>> print('slope:'+str(slope)) slope:1.0137906744047482 >>> print('y_intercept:'+str(y_intercept)) y_intercept:0.022909011828880693 >>> best_fit=[] >>> for i in x_vals: ... best_fit.append(slope*i+y_intercept) ... >>> plt.plot(x_vals,y_vals,'o',label='Data') [<matplotlib.lines.Line2D object at 0x000001E0A58DD9B0>] >>> plt.plot(x_vals,best_fit,'r-',label='Best fit line',linewidth=3) [<matplotlib.lines.Line2D object at 0x000001E0A2DFAF98>] >>> plt.legend(loc='upper left') <matplotlib.legend.Legend object at 0x000001E0A58F03C8> >>> plt.show()
以上這篇使用tensorflow實現(xiàn)矩陣分解方式就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持億速云。
免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權內(nèi)容。