溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點(diǎn)擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

keras加載lstm+crf模型出錯怎么辦

發(fā)布時間:2020-07-17 11:08:19 來源:億速云 閱讀:438 作者:小豬 欄目:開發(fā)技術(shù)

小編這次要給大家分享的是keras加載lstm+crf模型出錯怎么辦,文章內(nèi)容豐富,感興趣的小伙伴可以來了解一下,希望大家閱讀完這篇文章之后能夠有所收獲。

錯誤展示

new_model = load_model(“model.h6”)

報錯:

1、keras load_model valueError: Unknown Layer :CRF

2、keras load_model valueError: Unknown loss function:crf_loss

錯誤修改

1、load_model修改源碼:custom_objects = None 改為 def load_model(filepath, custom_objects, compile=True):

2、new_model = load_model(“model.h6”,custom_objects={‘CRF': CRF,‘crf_loss': crf_loss,‘crf_viterbi_accuracy': crf_viterbi_accuracy}

以上修改后,即可運(yùn)行。

Code Example:

# coding: utf-8
from keras.models import Sequential
from keras.layers import Embedding
from keras.layers import LSTM
from keras.layers import Bidirectional
from keras.layers import Dense
from keras.layers import TimeDistributed
from keras.layers import Dropout
from keras_contrib.layers.crf import CRF
from keras_contrib.utils import save_load_utils

VOCAB_SIZE = 2500
EMBEDDING_OUT_DIM = 128
TIME_STAMPS = 100
HIDDEN_UNITS = 200
DROPOUT_RATE = 0.3
NUM_CLASS = 5

def build_embedding_bilstm2_crf_model():
 """
 帶embedding的雙向LSTM + crf
 """
 model = Sequential()
 model.add(Embedding(VOCAB_SIZE, output_dim=EMBEDDING_OUT_DIM, input_length=TIME_STAMPS))
 model.add(Bidirectional(LSTM(HIDDEN_UNITS, return_sequences=True)))
 model.add(Dropout(DROPOUT_RATE))
 model.add(Bidirectional(LSTM(HIDDEN_UNITS, return_sequences=True)))
 model.add(Dropout(DROPOUT_RATE))
 model.add(TimeDistributed(Dense(NUM_CLASS)))
 crf_layer = CRF(NUM_CLASS)
 model.add(crf_layer)
 model.compile('rmsprop', loss=crf_layer.loss_function, metrics=[crf_layer.accuracy])
 return model

def save_embedding_bilstm2_crf_model(model, filename):
 save_load_utils.save_all_weights(model,filename)

def load_embedding_bilstm2_crf_model(filename):
 model = build_embedding_bilstm2_crf_model()
 save_load_utils.load_all_weights(model, filename)
 return model

if __name__ == '__main__':
 model = build_embedding_bilstm2_crf_model()

注意:

如果執(zhí)行build模型報錯,則很可能是keras版本的問題。在keras-contrib==2.0.8且keras==2.0.8時,上面代碼不會報錯。

看完這篇關(guān)于keras加載lstm+crf模型出錯怎么辦的文章,如果覺得文章內(nèi)容寫得不錯的話,可以把它分享出去給更多人看到。

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報,并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI