您好,登錄后才能下訂單哦!
在C++中實(shí)現(xiàn)聚類算法時(shí),聚類趨勢(shì)預(yù)測(cè)是一個(gè)重要的任務(wù)。聚類趨勢(shì)預(yù)測(cè)可以幫助我們了解數(shù)據(jù)的分布和潛在結(jié)構(gòu),從而為后續(xù)的數(shù)據(jù)分析和決策提供依據(jù)。以下是一些常用的聚類和趨勢(shì)預(yù)測(cè)算法,以及如何在C++中實(shí)現(xiàn)它們的基本思路:
K-means是一種廣泛使用的聚類算法,它將數(shù)據(jù)劃分為K個(gè)簇,每個(gè)簇的中心是該簇內(nèi)所有數(shù)據(jù)點(diǎn)的均值。
#include <iostream>
#include <vector>
#include <cmath>
#include <random>
using namespace std;
struct Point {
double x, y;
};
double distance(const Point& a, const Point& b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
vector<Point> kmeans(const vector<Point>& points, int k, int max_iterations = 100) {
vector<Point> centroids(k);
random_device rd;
mt19937 gen(rd());
uniform_int_distribution<> dis(0, points.size() - 1);
// Initialize centroids
for (int i = 0; i < k; ++i) {
centroids[i] = points[dis(gen)];
}
for (int iter = 0; iter < max_iterations; ++iter) {
vector<Point> clusters(k);
vector<int> cluster_counts(k, 0);
// Assign points to clusters
for (const auto& point : points) {
double min_dist = DBL_MAX;
int min_cluster = -1;
for (int i = 0; i < k; ++i) {
double dist = distance(point, centroids[i]);
if (dist < min_dist) {
min_dist = dist;
min_cluster = i;
}
}
clusters[min_cluster].push_back(point);
cluster_counts[min_cluster]++;
}
// Update centroids
for (int i = 0; i < k; ++i) {
if (cluster_counts[i] > 0) {
Point centroid = {0, 0};
for (const auto& point : clusters[i]) {
centroid.x += point.x;
centroid.y += point.y;
}
centroid.x /= cluster_counts[i];
centroid.y /= cluster_counts[i];
centroids[i] = centroid;
}
}
// Check for convergence
bool converged = true;
for (int i = 0; i < k; ++i) {
if (cluster_counts[i] > 0) {
Point prev_centroid = centroids[i];
for (const auto& point : clusters[i]) {
double dist = distance(point, prev_centroid);
if (dist > 1e-6) { // Arbitrary small threshold
converged = false;
break;
}
}
if (!converged) break;
centroids[i] = prev_centroid; // Revert to previous centroid for this iteration
}
}
if (converged) break;
}
return centroids;
}
int main() {
vector<Point> points = {{1, 2}, {1, 4}, {1, 0}, {10, 2}, {10, 4}, {10, 0}};
int k = 2;
vector<Point> centroids = kmeans(points, k);
for (const auto& centroid : centroids) {
cout << "Centroid: (" << centroid.x << ", " << centroid.y << ")" << endl;
}
return 0;
}
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一種基于密度的聚類算法,它能夠發(fā)現(xiàn)任意形狀的簇,并識(shí)別噪聲點(diǎn)。
#include <iostream>
#include <vector>
#include <queue>
#include <cmath>
#include <random>
using namespace std;
struct Point {
double x, y;
};
double distance(const Point& a, const Point& b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
vector<Point> dbscan(const vector<Point>& points, double eps, int min_samples) {
vector<Point> clusters;
vector<bool> visited(points.size(), false);
random_device rd;
mt19937 gen(rd());
uniform_int_distribution<> dis(0, points.size() - 1);
for (int i = 0; i < points.size(); ++i) {
if (!visited[i]) {
vector<Point> cluster;
queue<int> q;
q.push(i);
visited[i] = true;
while (!q.empty()) {
int point_index = q.front();
q.pop();
cluster.push_back(points[point_index]);
for (const auto& neighbor : points) {
if (!visited[neighbor.first] && distance(points[point_index], neighbor) <= eps) {
visited[neighbor.first] = true;
q.push(neighbor.first);
}
}
}
if (cluster.size() >= min_samples) {
clusters.push_back(cluster);
}
}
}
return clusters;
}
int main() {
vector<Point> points = {{1, 2}, {1, 4}, {1, 0}, {10, 2}, {10, 4}, {10, 0}};
double eps = 2;
int min_samples = 2;
vector<Point> clusters = dbscan(points, eps, min_samples);
for (const auto& cluster : clusters) {
cout << "Cluster:" << endl;
for (const auto& point : cluster) {
cout << "(" << point.x << ", " << point.y << ")" << endl;
}
}
return 0;
}
高斯混合模型是一種基于概率的聚類方法,它假設(shè)數(shù)據(jù)是由多個(gè)高斯分布生成的。
#include <iostream>
#include <vector>
#include <cmath>
#include <random>
using namespace std;
struct Point {
double x, y;
};
double multivariate_normal_pdf(const Point& x, const vector<Point>& mean, const vector<vector<double>>& covariance) {
double exponent = 0.0;
for (size_t i = 0; i < x.size(); ++i) {
exponent += pow(x[i] - mean[i], 2) / covariance[i][i];
}
return exp(-0.5 * exponent) / sqrt((2 * M_PI) * pow(covariance[0][0], covariance.size()));
}
vector<vector<Point>> gmm(const vector<Point>& points, int num_components, double max_iterations = 100) {
vector<vector<Point>> clusters(num_components);
vector<Point> means(num_components);
vector<vector<double>> covariances(num_components);
vector<double> weights(num_components, 1.0 / num_components);
// Initialize means and covariances randomly
random_device rd;
mt19937 gen(rd());
uniform_int_distribution<> dis(0, points.size() - 1);
for (int i = 0; i < num_components; ++i) {
int index = dis(gen);
means[i] = points[index];
covariances[i] = {{1, 0}, {0, 1}}; // Identity matrix
}
for (int iter = 0; iter < max_iterations; ++iter) {
vector<double> log_likelihood(num_components, 0.0);
// E-step: Compute posterior probabilities
for (size_t i = 0; i < points.size(); ++i) {
double max_prob = -1.0;
int max_cluster = -1;
for (int j = 0; j < num_components; ++j) {
double prob = multivariate_normal_pdf(points[i], means[j], covariances[j]) * weights[j];
if (prob > max_prob) {
max_prob = prob;
max_cluster = j;
}
}
log_likelihood[max_cluster] += log(max_prob);
}
// M-step: Update parameters
double total_log_likelihood = accumulate(log_likelihood.begin(), log_likelihood.end(), 0.0);
for (int j = 0; j < num_components; ++j) {
weights[j] = exp(log_likelihood[j] - total_log_likelihood);
weights[j] /= accumulate(weights.begin(), weights.end(), 0.0);
Point sum = {0, 0};
for (size_t i = 0; i < points.size(); ++i) {
if (j == max_cluster) {
sum.x += points[i].x;
sum.y += points[i].y;
}
}
means[j] = sum / points.size();
vector<double> sum_cov(4, 0.0);
for (size_t i = 0; i < points.size(); ++i) {
if (j == max_cluster) {
sum_cov[0] += pow(points[i].x - means[j].x, 2);
sum_cov[1] += pow(points[i].y - means[j].y, 2);
sum_cov[2] += (points[i].x - means[j].x) * (points[i].y - means[j].y);
sum_cov[3] += pow(points[i].x - means[j].x, 2) * pow(points[i].y - means[j].y, 2);
}
}
double n = points.size();
covariances[j][0] = sum_cov[0] / n;
covariances[j][1] = sum_cov[1] / n;
covariances[j][2] = sum_cov[2] / n;
covariances[j][3] = sum_cov[3] / n;
}
}
// Assign points to clusters based on posterior probabilities
for (size_t i = 0; i < points.size(); ++i) {
double max_prob = -1.0;
int max_cluster = -1;
for (int j = 0; j < num_components; ++j) {
double prob = multivariate_normal_pdf(points[i], means[j], covariances[j]) * weights[j];
if (prob > max_prob) {
max_prob = prob;
max_cluster = j;
}
}
clusters[max_cluster].push_back(points[i]);
}
return clusters;
}
int main() {
vector<Point> points = {{1, 2}, {1, 4}, {1, 0}, {10, 2}, {10, 4}, {10, 0}};
int num_components = 2;
vector<vector<Point>> clusters = gmm(points, num_components);
for (const auto& cluster : clusters) {
cout << "Cluster:" << endl;
for (const auto& point : cluster) {
cout << "(" << point.x << ", " << point.y << ")" << endl;
}
}
return 0;
}
這些算法只是聚類和趨勢(shì)預(yù)測(cè)的一部分方法,實(shí)際應(yīng)用中可能需要根據(jù)具體需求選擇合適的算法并進(jìn)行調(diào)整。希望這些示例能幫助你理解如何在C++中實(shí)現(xiàn)這些算法。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。