您好,登錄后才能下訂單哦!
C++是一種強(qiáng)大的編程語言,可以用于實(shí)現(xiàn)各種復(fù)雜的網(wǎng)絡(luò)社區(qū)結(jié)構(gòu)發(fā)現(xiàn)算法。以下是一些常用的C++聚類算法,可以幫助您分析和發(fā)現(xiàn)網(wǎng)絡(luò)中的社區(qū)結(jié)構(gòu):
igraph
來實(shí)現(xiàn)Louvain算法。以下是一個(gè)簡單的示例代碼:#include <igraph.h>
#include <iostream>
int main() {
igraph_t graph;
igraph_vector_t community;
igraph_vector_t membership;
int n, no_of_edges, i;
igraph_small(&graph, 6, IGRAPH_UNDIRECTED, 0, 0, 0, 0, 0, 0);
n = igraph_vcount(&graph);
no_of_edges = igraph_ecount(&graph);
igraph_community_louvain(&graph, &community, &membership);
std::cout << "Community structure:" << std::endl;
for (i = 0; i < n; ++i) {
std::cout << "Node "<< i << ": Community " << membership[i] << std::endl;
}
igraph_destroy(&graph);
igraph_vector_destroy(&community);
igraph_vector_destroy(&membership);
return 0;
}
igraph
來實(shí)現(xiàn)Girvan-Newman算法。以下是一個(gè)簡單的示例代碼:#include <igraph.h>
#include <iostream>
int main() {
igraph_t graph;
igraph_vector_t community;
igraph_vector_t membership;
int n, no_of_edges, i;
igraph_small(&graph, 6, IGRAPH_UNDIRECTED, 0, 0, 0, 0, 0, 0);
n = igraph_vcount(&graph);
no_of_edges = igraph_ecount(&graph);
igraph_community_girvan_newman(&graph, &community, &membership);
std::cout << "Community structure:" << std::endl;
for (i = 0; i < n; ++i) {
std::cout << "Node "<< i << ": Community " << membership[i] << std::endl;
}
igraph_destroy(&graph);
igraph_vector_destroy(&community);
igraph_vector_destroy(&membership);
return 0;
}
Eigen
和scikit-learn
來實(shí)現(xiàn)Spectral Clustering算法。以下是一個(gè)簡單的示例代碼:#include <iostream>
#include <Eigen/Dense>
#include <vector>
#include <cluster/spectral_clustering.hpp>
int main() {
std::vector<std::pair<int, int>> edges = {{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}};
int n = edges.size() + 1;
Eigen::MatrixXd affinity_matrix(n, n);
for (const auto& edge : edges) {
affinity_matrix(edge.first, edge.second) = 1;
affinity_matrix(edge.second, edge.first) = 1;
}
std::vector<int> labels;
SpectralClustering::cluster(affinity_matrix, labels, 2);
std::cout << "Community structure:" << std::endl;
for (int i = 0; i < n; ++i) {
std::cout << "Node "<< i << ": Community " << labels[i] << std::endl;
}
return 0;
}
這些算法可以幫助您分析和發(fā)現(xiàn)網(wǎng)絡(luò)中的社區(qū)結(jié)構(gòu)。您可以根據(jù)具體問題和需求選擇合適的算法,并根據(jù)需要對(duì)其進(jìn)行修改和優(yōu)化。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請(qǐng)聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。