溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶(hù)服務(wù)條款》

如何進(jìn)行二叉搜索樹(shù)的增刪查改

發(fā)布時(shí)間:2021-11-25 15:28:55 來(lái)源:億速云 閱讀:153 作者:柒染 欄目:編程語(yǔ)言

本篇文章給大家分享的是有關(guān)如何進(jìn)行二叉搜索樹(shù)的增刪查改,小編覺(jué)得挺實(shí)用的,因此分享給大家學(xué)習(xí),希望大家閱讀完這篇文章后可以有所收獲,話(huà)不多說(shuō),跟著小編一起來(lái)看看吧。

二叉搜索樹(shù)的性質(zhì):

    1.每個(gè)節(jié)點(diǎn)都有一個(gè)作為搜索依據(jù)的關(guān)鍵碼(key),所有節(jié)點(diǎn)的關(guān)鍵碼都不一樣。

    2.左子樹(shù)的關(guān)鍵碼都小于根節(jié)點(diǎn)的關(guān)鍵碼

    3.右子樹(shù)的關(guān)鍵碼都大于根節(jié)點(diǎn)的關(guān)鍵碼

    4.左右子樹(shù)都是二叉搜索樹(shù)

#include<iostream>

using namespace std;

template<class K,class V>

struct BSTreeNode

{

BSTreeNode<K, V>* _left;

BSTreeNode<K, V>* _right;

K _key;

V _value;

BSTreeNode(const K& key, const V& value)

: _left(NULL)

, _right(NULL)

, _key(key)

, _value(value)

{}

};

template < class K, class V>

class BSTree

{

typedef BSTreeNode<K, V> Node;

public:

BSTree()

:_root(NULL)

{}

/*bool Insert(const K& key, const V& value)

{

if (_root == NULL)

{

_root = new Node(key, value);

return true;

}

Node* parent = NULL;

Node* cur = _root;

while (cur)

{

if (cur->_key > key)

{

parent = cur;

cur = cur->_left;

}

else if (cur->_key < key)

{

parent = cur;

cur = cur->_right;

}

else

{

return false;

}

}

if (parent->_key > key)

{

parent->_left = new Node(key, value);

}

else

{

parent->_right = new Node(key, value);

}

return true;

}

Node* Find(const K& key)

{

Node* cur = _root;

while (cur)

{

if (cur->_key > key)

{

cur = cur->_left;

}

else if (cur->_key < key)

{

cur = cur->_right;

}

else

{

return cur;

}

}

return NULL;

}

bool Remove(const K& key)

{

if (_root == NULL)

{

return false;

}

Node* parent = NULL;

Node* cur = _root;

while (cur)

{

if (cur->_key < key)

{

parent = cur;

cur = cur->_right;

}

else if (cur->_key > key)

{

parent = cur;

cur = cur->_left;

}

else

{

if (cur->_left == NULL)//左為空

{

if (cur == _root)

{

_root = cur->_right;

}

else

{

if (parent->_left == cur)

{

parent->_left = cur->_right;

}

else

{

parent->_right = cur->_right;

}

}

delete cur;

}

else if (cur->_right == NULL)//右為空

{

if (parent == NULL)

{

_root = cur;

}

else

{

if (parent->_left == cur)

{

parent->_left = cur->_left;

}

else

{

parent->_right = cur->_left;

}

}

delete cur;

}

else//左右都不為空

{

Node* parent = cur;

Node* left = cur->_right;

while (left->_left)

{

parent = left;

left = left->_left;

}

cur->_key = left->_key;

cur->_value = left->_value;

if (parent->_left == left)

{

parent->_left = left->_right;

}

else

{

parent->_right = left->_right;

}

delete left;

}

return true;

}

}

return false;

}*/

void Inorder()

{

Node* root = _root;

_Inorder(root);

cout << endl;

}

void _Inorder(Node* root)

{

if (root == NULL)

{

return;

}

_Inorder(root->_left);

cout << root->_key << " ";

_Inorder(root->_right);

}

bool InsertR(const K& key, const V& value)

{

return _InsertR(_root, key, value);

}

Node* FindR(const K& key)

{

return _FindR(_root, key);

}

bool RemoveR(const K& key)

{

return _RemoveR(_root, key);

}

protected:

bool _InsertR(Node*& root, const K& key, const V& value)

{

if (root == NULL)

{

root = new Node(key, value);

return true;

}

if (root->_key > key)

{

return _InsertR(root->_left, key, value);

}

else if (root->_key < key)

{

return _InsertR(root->_right, key, value);

}

else

{

return false;

}

}

Node* _FindR(Node* root, const K& key)

{

if (root == NULL)

{

return NULL;

}

if (root->_key == key)

{

return root;

}

if (root->_key > key)

{

return _FindR(root->_left, key);

}

else if (root->_key < key)

{

return _FindR(root->_right, key);

}

}

bool _RemoveR(Node*& root, const K& key)

{

if (root == NULL)

{

return false;

}

if (root->_key > key)

{

return _RemoveR(root->_left, key);

}

else if (root->_key < key)

{

return _RemoveR(root->_right, key);

}

else

{

Node* del = root;

if (root->_left == NULL)//左為空

{

root = root->_right;//這里不用考慮被刪結(jié)點(diǎn)的父節(jié)點(diǎn),因?yàn)檫f歸使用的引用,傳過(guò)來(lái)的參數(shù)其實(shí)是父親結(jié)點(diǎn)的左孩子或者右孩子

}

else if (root->_right == NULL)//右為空

{

root = root->_left;

}

else//左右都不為空

{

Node* parent = root;

Node* left = root->_right;

while (left->_left)

{

parent = left;

left = left->_left;

}

del = left;

root->_key = left->_key;

root->_value = left->_value;

if (parent->_left == left)

{

parent->_left = left->_right;

}

else

{

parent->_right = left->_right;

}

}

delete del;

}

return true;

}

protected:

Node* _root;

};

以上就是如何進(jìn)行二叉搜索樹(shù)的增刪查改,小編相信有部分知識(shí)點(diǎn)可能是我們?nèi)粘9ぷ鲿?huì)見(jiàn)到或用到的。希望你能通過(guò)這篇文章學(xué)到更多知識(shí)。更多詳情敬請(qǐng)關(guān)注億速云行業(yè)資訊頻道。

向AI問(wèn)一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀(guān)點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI