您好,登錄后才能下訂單哦!
要使用Lasagne框架進(jìn)行自定義層的開發(fā),可以按照以下步驟進(jìn)行:
import lasagne
import theano.tensor as T
class CustomDenseLayer(lasagne.layers.Layer):
def __init__(self, incoming, num_units, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform(), b=lasagne.init.Constant(0.), **kwargs):
super(CustomDenseLayer, self).__init__(incoming, **kwargs)
self.num_units = num_units
self.nonlinearity = nonlinearity
self.W = self.add_param(W, (incoming.output_shape[1], num_units), name='W')
if b is None:
self.b = None
else:
self.b = self.add_param(b, (num_units,), name='b', regularizable=False)
def get_output_for(self, input, **kwargs):
activation = T.dot(input, self.W)
if self.b is not None:
activation = activation + self.b.dimshuffle('x', 0)
return self.nonlinearity(activation)
input_var = T.matrix('input')
target_var = T.ivector('target')
network = lasagne.layers.InputLayer(shape=(None, 784), input_var=input_var)
network = CustomDenseLayer(network, num_units=100)
network = lasagne.layers.DenseLayer(network, num_units=10, nonlinearity=lasagne.nonlinearities.softmax)
prediction = lasagne.layers.get_output(network)
loss = lasagne.objectives.categorical_crossentropy(prediction, target_var).mean()
params = lasagne.layers.get_all_params(network, trainable=True)
updates = lasagne.updates.adam(loss, params)
train_fn = theano.function([input_var, target_var], loss, updates=updates)
通過以上步驟,就可以使用Lasagne框架進(jìn)行自定義層的開發(fā)和神經(jīng)網(wǎng)絡(luò)模型的構(gòu)建。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。