您好,登錄后才能下訂單哦!
今天小編給大家分享一下Python+FuzzyWuzzy怎么實(shí)現(xiàn)模糊匹配的相關(guān)知識(shí)點(diǎn),內(nèi)容詳細(xì),邏輯清晰,相信大部分人都還太了解這方面的知識(shí),所以分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后有所收獲,下面我們一起來(lái)了解一下吧。
在處理數(shù)據(jù)的過(guò)程中,難免會(huì)遇到下面類(lèi)似的場(chǎng)景,自己手里頭獲得的是簡(jiǎn)化版的數(shù)據(jù)字段,但是要比對(duì)的或者要合并的卻是完整版的數(shù)據(jù)(有時(shí)候也會(huì)反過(guò)來(lái))
最常見(jiàn)的一個(gè)例子就是:在進(jìn)行地理可視化中,自己收集的數(shù)據(jù)只保留的縮寫(xiě),比如北京,廣西,新疆,西藏等,但是待匹配的字段數(shù)據(jù)卻是北京市,廣西壯族自治區(qū),新疆維吾爾自治區(qū),西藏自治區(qū)等,如下。因此就需要有沒(méi)有一種方式可以很快速便捷的直接進(jìn)行對(duì)應(yīng)字段的匹配并將結(jié)果單獨(dú)生成一列,就可以用到FuzzyWuzzy庫(kù)。
FuzzyWuzzy 是一個(gè)簡(jiǎn)單易用的模糊字符串匹配工具包。它依據(jù) Levenshtein Distance 算法,計(jì)算兩個(gè)序列之間的差異。
Levenshtein Distance算法,又叫 Edit Distance算法,是指兩個(gè)字符串之間,由一個(gè)轉(zhuǎn)成另一個(gè)所需的最少編輯操作次數(shù)。許可的編輯操作包括將一個(gè)字符替換成另一個(gè)字符,插入一個(gè)字符,刪除一個(gè)字符。一般來(lái)說(shuō),編輯距離越小,兩個(gè)串的相似度越大。
這里使用的是Anaconda下的jupyter notebook編程環(huán)境,因此在Anaconda的命令行中輸入一下指令進(jìn)行第三方庫(kù)安裝。
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple FuzzyWuzzy
該模塊下主要介紹四個(gè)函數(shù)(方法),分別為:簡(jiǎn)單匹配(Ratio)、非完全匹配(Partial Ratio)、忽略順序匹配(Token Sort Ratio)和去重子集匹配(Token Set Ratio)
注意: 如果直接導(dǎo)入這個(gè)模塊的話,系統(tǒng)會(huì)提示warning,當(dāng)然這不代表報(bào)錯(cuò),程序依舊可以運(yùn)行(使用的默認(rèn)算法,執(zhí)行速度較慢),可以按照系統(tǒng)的提示安裝python-Levenshtein庫(kù)進(jìn)行輔助,這有利于提高計(jì)算的速度。
2.1.1 簡(jiǎn)單匹配(Ratio)
簡(jiǎn)單的了解一下就行,這個(gè)不怎么精確,也不常用
fuzz.ratio("河南省", "河南省") >>> 100 > fuzz.ratio("河南", "河南省") >>> 80
2.1.2 非完全匹配(Partial Ratio)
盡量使用非完全匹配,精度較高
fuzz.partial_ratio("河南省", "河南省") >>> 100 fuzz.partial_ratio("河南", "河南省") >>> 100
2.1.3 忽略順序匹配(Token Sort Ratio)
原理在于:以 空格 為分隔符,小寫(xiě) 化所有字母,無(wú)視空格外的其它標(biāo)點(diǎn)符號(hào)
fuzz.ratio("西藏 自治區(qū)", "自治區(qū) 西藏") >>> 50 fuzz.ratio('I love YOU','YOU LOVE I') >>> 30 fuzz.token_sort_ratio("西藏 自治區(qū)", "自治區(qū) 西藏") >>> 100 fuzz.token_sort_ratio('I love YOU','YOU LOVE I') >>> 100
2.1.4 去重子集匹配(Token Set Ratio)
相當(dāng)于比對(duì)之前有一個(gè)集合去重的過(guò)程,注意最后兩個(gè),可理解為該方法是在token_sort_ratio方法的基礎(chǔ)上添加了集合去重的功能,下面三個(gè)匹配的都是倒序
fuzz.ratio("西藏 西藏 自治區(qū)", "自治區(qū) 西藏") >>> 40 fuzz.token_sort_ratio("西藏 西藏 自治區(qū)", "自治區(qū) 西藏") >>> 80 fuzz.token_set_ratio("西藏 西藏 自治區(qū)", "自治區(qū) 西藏") >>> 100
fuzz這幾個(gè)ratio()函數(shù)(方法)最后得到的結(jié)果都是數(shù)字,如果需要獲得匹配度最高的字符串結(jié)果,還需要依舊自己的數(shù)據(jù)類(lèi)型選擇不同的函數(shù),然后再進(jìn)行結(jié)果提取,如果但看文本數(shù)據(jù)的匹配程度使用這種方式是可以量化的,但是對(duì)于我們要提取匹配的結(jié)果來(lái)說(shuō)就不是很方便了,因此就有了process模塊。
用于處理備選答案有限的情況,返回模糊匹配的字符串和相似度。
2.2.1 extract提取多條數(shù)據(jù)
類(lèi)似于爬蟲(chóng)中select,返回的是列表,其中會(huì)包含很多匹配的數(shù)據(jù)
choices = ["河南省", "鄭州市", "湖北省", "武漢市"] process.extract("鄭州", choices, limit=2) >>> [('鄭州市', 90), ('河南省', 0)] # extract之后的數(shù)據(jù)類(lèi)型是列表,即使limit=1,最后還是列表,注意和下面extractOne的區(qū)別
2.2.2 extractOne提取一條數(shù)據(jù)
如果要提取匹配度最大的結(jié)果,可以使用extractOne,注意這里返回的是 元組 類(lèi)型, 還有就是匹配度最大的結(jié)果不一定是我們想要的數(shù)據(jù),可以通過(guò)下面的示例和兩個(gè)實(shí)戰(zhàn)應(yīng)用體會(huì)一下
process.extractOne("鄭州", choices) >>> ('鄭州市', 90) process.extractOne("北京", choices) >>> ('湖北省', 45)
這里舉兩個(gè)實(shí)戰(zhàn)應(yīng)用的小例子,第一個(gè)是公司名稱(chēng)字段的模糊匹配,第二個(gè)是省市字段的模糊匹配
數(shù)據(jù)及待匹配的數(shù)據(jù)樣式如下:自己獲取到的數(shù)據(jù)字段的名稱(chēng)很簡(jiǎn)潔,并不是公司的全稱(chēng),因此需要進(jìn)行兩個(gè)字段的合并
直接將代碼封裝為函數(shù),主要是為了方便日后的調(diào)用,這里參數(shù)設(shè)置的比較詳細(xì),執(zhí)行結(jié)果如下:
3.1.1 參數(shù)講解:
① 第一個(gè)參數(shù)df_1是自己獲取的欲合并的左側(cè)數(shù)據(jù)(這里是data變量);
② 第二個(gè)參數(shù)df_2是待匹配的欲合并的右側(cè)數(shù)據(jù)(這里是company變量);
③ 第三個(gè)參數(shù)key1是df_1中要處理的字段名稱(chēng)(這里是data變量里的‘公司名稱(chēng)’字段)
④ 第四個(gè)參數(shù)key2是df_2中要匹配的字段名稱(chēng)(這里是company變量里的‘公司名稱(chēng)’字段)
⑤ 第五個(gè)參數(shù)threshold是設(shè)定提取結(jié)果匹配度的標(biāo)準(zhǔn)。注意這里就是對(duì)extractOne方法的完善,提取到的最大匹配度的結(jié)果并不一定是我們需要的,所以需要設(shè)定一個(gè)閾值來(lái)評(píng)判,這個(gè)值就為90,只有是大于等于90,這個(gè)匹配結(jié)果我們才可以接受
⑥ 第六個(gè)參數(shù),默認(rèn)參數(shù)就是只返回兩個(gè)匹配成功的結(jié)果
⑦ 返回值:為df_1添加‘matches’字段后的新的DataFrame數(shù)據(jù)
3.1.2 核心代碼講解
第一部分代碼如下,可以參考上面講解process.extract方法,這里就是直接使用,所以返回的結(jié)果m就是列表中嵌套元祖的數(shù)據(jù)格式,樣式為: [(‘鄭州市’, 90), (‘河南省’, 0)],因此第一次寫(xiě)入到’matches’字段中的數(shù)據(jù)也就是這種格式
注意,注意: 元祖中的第一個(gè)是匹配成功的字符串,第二個(gè)就是設(shè)置的threshold參數(shù)比對(duì)的數(shù)字對(duì)象
s = df_2[key2].tolist() m = df_1[key1].apply(lambda x: process.extract(x, s, limit=limit)) df_1['matches'] = m
第二部分的核心代碼如下,有了上面的梳理,明確了‘matches’字段中的數(shù)據(jù)類(lèi)型,然后就是進(jìn)行數(shù)據(jù)的提取了,需要處理的部分有兩點(diǎn)需要注意的:
① 提取匹配成功的字符串,并對(duì)閾值小于90的數(shù)據(jù)填充空值
② 最后把數(shù)據(jù)添加到‘matches’字段
m2 = df_1['matches'].apply(lambda x: [i[0] for i in x if i[1] >= threshold][0] if len([i[0] for i in x if i[1] >= threshold]) > 0 else '') #要理解第一個(gè)‘matches'字段返回的數(shù)據(jù)類(lèi)型是什么樣子的,就不難理解這行代碼了 #參考一下這個(gè)格式:[('鄭州市', 90), ('河南省', 0)] df_1['matches'] = m2 return df_1
自己的數(shù)據(jù)和待匹配的數(shù)據(jù)背景介紹中已經(jīng)有圖片顯示了,上面也已經(jīng)封裝了模糊匹配的函數(shù),這里直接調(diào)用上面的函數(shù),輸入相應(yīng)的參數(shù)即可,代碼以及執(zhí)行結(jié)果如下:
數(shù)據(jù)處理完成,經(jīng)過(guò)封裝后的函數(shù)可以直接放在自己自定義的模塊名文件下面,以后可以方便直接導(dǎo)入函數(shù)名即可,可以參考將自定義常用的一些函數(shù)封裝成可以直接調(diào)用的模塊方法。
#模糊匹配 def fuzzy_merge(df_1, df_2, key1, key2, threshold=90, limit=2): """ :param df_1: the left table to join :param df_2: the right table to join :param key1: key column of the left table :param key2: key column of the right table :param threshold: how close the matches should be to return a match, based on Levenshtein distance :param limit: the amount of matches that will get returned, these are sorted high to low :return: dataframe with boths keys and matches """ s = df_2[key2].tolist() m = df_1[key1].apply(lambda x: process.extract(x, s, limit=limit)) df_1['matches'] = m m2 = df_1['matches'].apply(lambda x: [i[0] for i in x if i[1] >= threshold][0] if len([i[0] for i in x if i[1] >= threshold]) > 0 else '') df_1['matches'] = m2 return df_1 from fuzzywuzzy import fuzz from fuzzywuzzy import process df = fuzzy_merge(data, company, '公司名稱(chēng)', '公司名稱(chēng)', threshold=90) df
以上就是“Python+FuzzyWuzzy怎么實(shí)現(xiàn)模糊匹配”這篇文章的所有內(nèi)容,感謝各位的閱讀!相信大家閱讀完這篇文章都有很大的收獲,小編每天都會(huì)為大家更新不同的知識(shí),如果還想學(xué)習(xí)更多的知識(shí),請(qǐng)關(guān)注億速云行業(yè)資訊頻道。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。