溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點(diǎn)擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

怎么在python中使用pandas進(jìn)行模糊匹配

發(fā)布時間:2021-03-05 16:46:58 來源:億速云 閱讀:8035 作者:Leah 欄目:開發(fā)技術(shù)

這期內(nèi)容當(dāng)中小編將會給大家?guī)碛嘘P(guān)怎么在python中使用pandas進(jìn)行模糊匹配,文章內(nèi)容豐富且以專業(yè)的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。

python可以做什么

Python是一種編程語言,內(nèi)置了許多有效的工具,Python幾乎無所不能,該語言通俗易懂、容易入門、功能強(qiáng)大,在許多領(lǐng)域中都有廣泛的應(yīng)用,例如最熱門的大數(shù)據(jù)分析,人工智能,Web開發(fā)等。

1.首先讀取Excel文件

怎么在python中使用pandas進(jìn)行模糊匹配

數(shù)據(jù)代表了各個城市店鋪的裝修和配置費(fèi)用,要統(tǒng)計出裝修和配置項的總費(fèi)用并進(jìn)行加和計算;

2.pandas實現(xiàn)過程

import pandas as pd
#1.讀取數(shù)據(jù)
df = pd.read_excel(r'./data/pfee.xlsx')
print(df)

怎么在python中使用pandas進(jìn)行模糊匹配

cols = list(df.columns)
print(cols)

怎么在python中使用pandas進(jìn)行模糊匹配

#2.獲取含有裝修 和 配置 字段的數(shù)據(jù)
zx_lists=[]
pz_lists=[]
for name in cols:
 if '裝修' in name:
  zx_lists.append(name)
 elif '配置' in name:
  pz_lists.append(name)
print(zx_lists)
print(pz_lists)

怎么在python中使用pandas進(jìn)行模糊匹配

#3.對裝修和配置項費(fèi)用進(jìn)行求和計算
df['裝修-求和'] =df[zx_lists].apply(lambda x:x.sum(),axis=1)
df['配置-求和'] = df[pz_lists].apply(lambda x:x.sum(),axis=1)
print(df)

怎么在python中使用pandas進(jìn)行模糊匹配

補(bǔ)充:pandas 中dataframe 中的模糊匹配 與pyspark dataframe 中的模糊匹配

1.pandas dataframe

匹配一個很簡單,批量匹配如下

df_obj[df_obj['title'].str.contains(r'.*?n.*')] #使用正則表達(dá)式進(jìn)行模糊匹配,*匹配0或無限次,?匹配0或1次

pyspark dataframe 中模糊匹配有兩種方式

2.spark dataframe api, filter rlike 聯(lián)合使用

df1=df.filter("uri rlike 
 'com.tencent.tmgp.sgame|%E8%80%85%E8%8D%A3%E8%80%80_|android.ugc.live|\
 %e7%88f%e8%a7%86%e9%a2%91|%E7%%8F%E8%A7%86%E9%A2%91'").groupBy("uri").\
 count().sort("count", ascending=False)

注意點(diǎn):

1.rlike 后面進(jìn)行批量匹配用引號包裹即可

2.rlike 中要匹配特殊字符的話,不需要轉(zhuǎn)義

3.rlike '\\\\bapple\\\\b' 雖然也可以匹配但是匹配數(shù)量不全,具體原因不明,歡迎討論。

In [5]: df.filter("name rlike '%'").show()
+---+------+-----+
|age|height| name|
+---+------+-----+
| 4| 140|A%l%i|
| 6| 180| i%ce|
+---+------+-----+

3.spark sql

spark.sql("select uri from t where uri like '%com.tencent.tmgp.sgame%' or uri like 'douyu'").show(5)

如果要批量匹配的話,就需要在后面繼續(xù)添加uri like '%blabla%',就有點(diǎn)繁瑣了。

對了這里需要提到原生sql 的批量匹配,regexp 就很方便了,跟rlike 有點(diǎn)相似

mysql> select count(*) from url_parse where uri regexp 'android.ugc.live|com.tencent.tmgp.sgame';
+----------+
| count(*) |
+----------+
|  9768 |
+----------+
1 row in set (0.52 sec)

于是這里就可以將sql中regexp 應(yīng)用到spark sql 中

In [9]: spark.sql('select * from t where name regexp "%l|t|_"').show()
+---+------+------+
|age|height| name|
+---+------+------+
| 1| 150|Al_ice|
| 4| 140| A%l%i|
+---+------+------+

上述就是小編為大家分享的怎么在python中使用pandas進(jìn)行模糊匹配了,如果剛好有類似的疑惑,不妨參照上述分析進(jìn)行理解。如果想知道更多相關(guān)知識,歡迎關(guān)注億速云行業(yè)資訊頻道。

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI