溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點(diǎn)擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

Android OpenCv4如何實(shí)現(xiàn)邊緣檢測及輪廓繪制出圖像最大邊緣

發(fā)布時(shí)間:2022-02-24 15:45:32 來源:億速云 閱讀:172 作者:iii 欄目:開發(fā)技術(shù)

本篇內(nèi)容介紹了“Android OpenCv4如何實(shí)現(xiàn)邊緣檢測及輪廓繪制出圖像最大邊緣”的有關(guān)知識,在實(shí)際案例的操作過程中,不少人都會遇到這樣的困境,接下來就讓小編帶領(lǐng)大家學(xué)習(xí)一下如何處理這些情況吧!希望大家仔細(xì)閱讀,能夠?qū)W有所成!

Canny邊緣檢測

基于Canny算法的邊緣檢測主要有5個(gè)步驟,依次是高斯濾波、像素梯度計(jì)算、非極大值像素梯度抑制、滯后閾值處理和孤立弱邊緣抑制。Canny在有噪聲的情況下表現(xiàn)好不好,取決于前面的降噪過程,可以手動做高斯處理提高識別率。

/**
		image  輸入圖像,必須是CV_8U的單通道或者三通道圖像。
		edges  輸出圖像,與輸入圖像具有相同尺寸的單通道圖像,且數(shù)據(jù)類型為CV_8U。
		threshold1  第一個(gè)滯后閾值。
		threshold2  第二個(gè)滯后閾值。
		apertureSize  Sobel算子的直徑。
		L2gradient  計(jì)算圖像梯度幅值方法的標(biāo)志。默認(rèn)為false
**/
public static void Canny(Mat image, Mat edges, double threshold1, double threshold2, int apertureSize, boolean L2gradient)

使用

    /**
     * canny算法,邊緣檢測

     */
    public static Mat canny(Bitmap bitmap) {
        Mat mSource = new Mat();

        Utils.bitmapToMat(bitmap, mSource);
        Mat grayMat = new Mat();
        Imgproc.cvtColor(mSource,grayMat,Imgproc.COLOR_BGR2GRAY);//轉(zhuǎn)換成灰度圖
        Mat mat = mSource.clone();
        Imgproc.Canny(mSource, mat, 75, 200);
        return mat;
    }

獲取圖像最大矩形

   /**
     * 返回邊緣檢測之后的最大矩形,并返回
     *
     * @param cannyMat
     *            Canny之后的mat矩陣
     * @return
     */
    public  Rect findMaxRect(Mat cannyMat) {
        Mat tmp = mSource.clone();
        List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
        Mat hierarchy = new Mat();
        // 尋找輪廓
        Imgproc.findContours(cannyMat, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
        int index = 0;
        double perimeter = 0;
        // 找出匹配到的最大輪廓
        for (int i = 0; i < contours.size(); i++) {
            // 最大面積
//            double area = Imgproc.contourArea(contours.get(i));
            //最大周長
            MatOfPoint2f source = new MatOfPoint2f();
            source.fromList(contours.get(i).toList());
            double length = Imgproc.arcLength(source,true);
            if(length>perimeter){
                perimeter =  length;
                index = i;
            }
        }
      
        /**
         * 參數(shù)一:image,待繪制輪廓的圖像。
         *
         * 參數(shù)二:contours,待繪制的輪廓集合。
         *
         * 參數(shù)三:contourIdx,要繪制的輪廓在contours中的索引,若為負(fù)數(shù),表示繪制全部輪廓。
         *
         * 參數(shù)四:color,繪制輪廓的顏色。
         *
         * 參數(shù)五:thickness,繪制輪廓的線條粗細(xì)。若為負(fù)數(shù),那么繪制輪廓的內(nèi)部。
         *
         * 參數(shù)六:lineType,線條類型。FILLED   LINE_4   4連通   LINE_8   8連通  LINE_AA  抗鋸齒
         */
        Imgproc.drawContours(
                tmp,
                contours,
                index,
                new Scalar(0.0, 0.0, 255.0),
                9,
                Imgproc.LINE_AA

        );

        Rect rect = Imgproc.boundingRect(contours.get(index));
//        Imgproc.rectangle(tmp, rect, new Scalar(0.0, 0.0, 255.0), 4, Imgproc.LINE_8);
        showImg(tmp);

        return rect;
    }

  /**
     * 顯示圖像
     * @param mat
     */
    private void showImg(Mat mat){

        Bitmap bitmap = Bitmap.createBitmap(mat.width(), mat.height(), Bitmap.Config.ARGB_8888);
        Utils.matToBitmap(mat, bitmap);
        mIvSrc.setImageBitmap(bitmap);
        mat.release();
    }

“Android OpenCv4如何實(shí)現(xiàn)邊緣檢測及輪廓繪制出圖像最大邊緣”的內(nèi)容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業(yè)相關(guān)的知識可以關(guān)注億速云網(wǎng)站,小編將為大家輸出更多高質(zhì)量的實(shí)用文章!

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI