您好,登錄后才能下訂單哦!
本篇內(nèi)容主要講解“qiime2如何建立分類器”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實(shí)用性強(qiáng)。下面就讓小編來帶大家學(xué)習(xí)“qiime2如何建立分類器”吧!
這種方法要求事先基于參考數(shù)據(jù)庫訓(xùn)練分類器。QIIME 2 團(tuán)隊(duì)建議為不同的引物組合建立專門的分類器。對于一些大家常用的引物組合,可直接在倉庫中下載( http://kronos.pharmacology.dal.ca/public_files/taxa_classifiers/qiime2-2020.2_classifiers/ ),沒有的話則需要自己手動建立分類器:
?16S V4/V5 region (classifier_silva_132_99_16S_V4.V5_515F_926R.qza)
16S V3/V4 region (classifier_silva_132_99_16S_V3.V4_341F_805R.qza)
16S V6/V8 region (classifier_silva_132_99_16S_V6.V8_B969F_BA1406R.qza)
16S V6/V8 region targeting archaea (classifier_silva_132_99_16S_V6.V8_A956F_A1401R.qza)
16S V3/V4 region targeting cyanobacteria (classifier_silva_132_99_16S_V3.V4_CYA359F_CYA781R.qza)
18S V4 region (classifier_silva_132_99_18S_V4_E572F_E1009R.qza)
Full ITS - fungi only (classifier_sh_refs_qiime_ver8_99_s_02.02.2019_ITS.qza)
Full ITS - all eukaryotes (classifier_sh_refs_qiime_ver8_99_s_all_02.02.2019_ITS.qza)
此外,在使用這些自定義分類器時,我們應(yīng)仔細(xì)檢查它們在數(shù)據(jù)集上是否正確執(zhí)行,手動檢查分類器對 ASV 的分類尤為重要。理論上,使用特定于引物的分類器,可以改進(jìn)物種注釋的效果,但仍建議你在首次運(yùn)行自定義 16S 分類器時同時運(yùn)行全長 16S 分類器進(jìn)行比較。
自己手動建立分類器代碼示例: 這里以V3-V4區(qū)引物為例:
338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and. 806R (5′-GGACTACHVGGGTWTCTAAT-3′)
# 下載數(shù)據(jù)庫文件(greengenes)
wget -c ftp://greengenes.microbio.me/greengenes_release/gg_13_5/gg_13_8_otus.tar.gz
# 解壓
tar -zxvf gg_13_8_otus.tar.gz
# 使用rep_set文件中的99_otus.fasta數(shù)據(jù)和taxonomy中的99_OTU_taxonomy.txt數(shù)據(jù)作為參考物種注釋
# 導(dǎo)入?yún)⒖夹蛄?/span>
qiime tools import \
--type 'FeatureData[Sequence]' \
--input-path gg_13_8_otus/rep_set/99_otus.fasta \
--output-path 99_otus.qza
# 導(dǎo)入物種分類信息
qiime tools import \
--type 'FeatureData[Taxonomy]' \
--input-format HeaderlessTSVTaxonomyFormat \
--input-path gg_13_8_otus/taxonomy/99_otu_taxonomy.txt \
--output-path ref-taxonomy.qza
# 本次使用 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and. 806R (5′-GGACTACHVGGGTWTCTAAT-3′)
#It has been shown that taxonomic classification accuracy of 16S rRNA gene sequences improves when a Naive Bayes classifier is trained on only the region of the target sequences that was sequenced (Werner et al., 2012).
qiime feature-classifier extract-reads \
--i-sequences 99_otus.qza \
--p-f-primer ACTCCTACGGGAGGCAGCAG \
--p-r-primer GGACTACHVGGGTWTCTAAT \
--o-reads ref-seqs.qza
# Train the classifier(分類器)
# 基于篩選的指定區(qū),生成實(shí)驗(yàn)特異的分類器
time qiime feature-classifier fit-classifier-naive-bayes \
--i-reference-reads ref-seqs.qza \
--i-reference-taxonomy ref-taxonomy.qza \
--o-classifier classifier_gg_13_8_99_V3-V4.qza
#Classification of fungal ITS sequences
#In our experience, fungal ITS classifiers trained on the UNITE reference database do NOT benefit from extracting/trimming reads to primer sites. We recommend training UNITE classifiers on the full reference sequences. Furthermore, we recommend the “developer” sequences (located within the QIIME-compatible release download) because the standard versions of the sequences have already been trimmed to the ITS region (excluding portions of flanking rRNA genes that may be present in amplicons generated with standard ITS primers).
到此,相信大家對“qiime2如何建立分類器”有了更深的了解,不妨來實(shí)際操作一番吧!這里是億速云網(wǎng)站,更多相關(guān)內(nèi)容可以進(jìn)入相關(guān)頻道進(jìn)行查詢,關(guān)注我們,繼續(xù)學(xué)習(xí)!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報,并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。