溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

Python中怎么實現(xiàn)一個隨機爬山算法

發(fā)布時間:2021-06-12 16:55:08 來源:億速云 閱讀:204 作者:Leah 欄目:編程語言

Python中怎么實現(xiàn)一個隨機爬山算法,相信很多沒有經(jīng)驗的人對此束手無策,為此本文總結(jié)了問題出現(xiàn)的原因和解決方法,通過這篇文章希望你能解決這個問題。

爬山算法

隨機爬山算法是一種隨機局部搜索優(yōu)化算法。它以起始點作為輸入和步長,步長是搜索空間內(nèi)的距離。該算法將初始點作為當(dāng)前最佳候選解決方案,并在提供的點的步長距離內(nèi)生成一個新點。計算生成的點,如果它等于或好于當(dāng)前點,則將其視為當(dāng)前點。新點的生成使用隨機性,通常稱為隨機爬山。這意味著該算法可以跳過響應(yīng)表面的顛簸,嘈雜,不連續(xù)或欺騙性區(qū)域,作為搜索的一部分。重要的是接受具有相等評估的不同點,因為它允許算法繼續(xù)探索搜索空間,例如在響應(yīng)表面的平坦區(qū)域上。限制這些所謂的“橫向”移動以避免無限循環(huán)也可能是有幫助的。該過程一直持續(xù)到滿足停止條件,例如最大數(shù)量的功能評估或給定數(shù)量的功能評估內(nèi)沒有改善為止。該算法之所以得名,是因為它會(隨機地)爬到響應(yīng)面的山坡上,達(dá)到局部最優(yōu)值。這并不意味著它只能用于最大化目標(biāo)函數(shù)。這只是一個名字。實際上,通常,我們最小化功能而不是最大化它們。作為局部搜索算法,它可能會陷入局部最優(yōu)狀態(tài)。然而,多次重啟可以允許算法定位全局最優(yōu)。步長必須足夠大,以允許在搜索空間中找到更好的附近點,但步幅不能太大,以使搜索跳出包含局部最優(yōu)值的區(qū)域。

爬山算法的實現(xiàn)

在撰寫本文時,SciPy庫未提供隨機爬山的實現(xiàn)。但是,我們可以自己實現(xiàn)它。首先,我們必須定義目標(biāo)函數(shù)和每個輸入變量到目標(biāo)函數(shù)的界限。目標(biāo)函數(shù)只是一個Python函數(shù),我們將其命名為Objective()。邊界將是一個2D數(shù)組,每個輸入變量都具有一個維度,該變量定義了變量的最小值和最大值。例如,一維目標(biāo)函數(shù)和界限將定義如下:

# objective function  def objective(x):   return 0   # define range for input  bounds = asarray([[-5.0, 5.0]])

接下來,我們可以生成初始解作為問題范圍內(nèi)的隨機點,然后使用目標(biāo)函數(shù)對其進(jìn)行評估。

# generate an initial point  solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])  # evaluate the initial point  solution_eval = objective(solution)

現(xiàn)在我們可以遍歷定義為“ n_iterations”的算法的預(yù)定義迭代次數(shù),例如100或1,000。

# run the hill climb  for i in range(n_iterations):

算法迭代的第一步是采取步驟。這需要預(yù)定義的“ step_size”參數(shù),該參數(shù)相對于搜索空間的邊界。我們將采用高斯分布的隨機步驟,其中均值是我們的當(dāng)前點,標(biāo)準(zhǔn)偏差由“ step_size”定義。這意味著大約99%的步驟將在當(dāng)前點的(3 * step_size)之內(nèi)。

# take a step  candidate = solution + randn(len(bounds)) * step_size

我們不必采取這種方式。您可能希望使用0到步長之間的均勻分布。例如:

# take a step  candidate = solution + rand(len(bounds)) * step_size

接下來,我們需要評估具有目標(biāo)函數(shù)的新候選解決方案。

# evaluate candidate point  candidte_eval = objective(candidate)

然后,我們需要檢查此新點的評估結(jié)果是否等于或優(yōu)于當(dāng)前最佳點,如果是,則用此新點替換當(dāng)前最佳點。

# check if we should keep the new point  if candidte_eval <= solution_eval:   # store the new point   solution, solution_eval = candidate, candidte_eval   # report progress   print('>%d f(%s) = %.5f' % (i, solution, solution_eval))

就是這樣。我們可以將此爬山算法實現(xiàn)為可重用函數(shù),該函數(shù)將目標(biāo)函數(shù)的名稱,每個輸入變量的范圍,總迭代次數(shù)和步驟作為參數(shù),并返回找到的最佳解決方案及其評估。

# hill climbing local search algorithm  def hillclimbing(objective, bounds, n_iterations, step_size):   # generate an initial point   solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])   # evaluate the initial point   solution_eval = objective(solution)   # run the hill climb   for i in range(n_iterations):    # take a step    candidate = solution + randn(len(bounds)) * step_size    # evaluate candidate point    candidte_eval = objective(candidate)    # check if we should keep the new point   if candidte_eval <= solution_eval:     # store the new point     solution, solution_eval = candidate, candidte_eval     # report progress     print('>%d f(%s) = %.5f' % (i, solution, solution_eval))   return [solution, solution_eval]

現(xiàn)在,我們知道了如何在Python中實現(xiàn)爬山算法,讓我們看看如何使用它來優(yōu)化目標(biāo)函數(shù)。

應(yīng)用爬山算法的示例

在本節(jié)中,我們將把爬山優(yōu)化算法應(yīng)用于目標(biāo)函數(shù)。首先,讓我們定義目標(biāo)函數(shù)。我們將使用一個簡單的一維x ^ 2目標(biāo)函數(shù),其邊界為[-5,5]。下面的示例定義了函數(shù),然后為輸入值的網(wǎng)格創(chuàng)建了函數(shù)響應(yīng)面的折線圖,并用紅線標(biāo)記了f(0.0)= 0.0處的最佳值。

# convex unimodal optimization function  from numpy import arange  from matplotlib import pyplot   # objective function  def objective(x):   return x[0]**2.0   # define range for input  r_min, r_max = -5.0, 5.0  # sample input range uniformly at 0.1 increments  inputs = arange(r_min, r_max, 0.1)  # compute targets  results = [objective([x]) for x in inputs]  # create a line plot of input vs result  pyplot.plot(inputs, results)  # define optimal input value  x_optima = 0.0  # draw a vertical line at the optimal input  pyplot.axvline(x=x_optima, ls='--', color='red')  # show the plot  pyplot.show()

運行示例將創(chuàng)建目標(biāo)函數(shù)的折線圖,并清晰地標(biāo)記函數(shù)的最優(yōu)值。

Python中怎么實現(xiàn)一個隨機爬山算法

接下來,我們可以將爬山算法應(yīng)用于目標(biāo)函數(shù)。首先,我們將播種偽隨機數(shù)生成器。通常這不是必需的,但是在這種情況下,我想確保每次運行算法時都得到相同的結(jié)果(相同的隨機數(shù)序列),以便以后可以繪制結(jié)果。

# seed the pseudorandom number generator  seed(5)

接下來,我們可以定義搜索的配置。在這種情況下,我們將搜索算法的1,000次迭代,并使用0.1的步長。假設(shè)我們使用的是高斯函數(shù)來生成步長,這意味著大約99%的所有步長將位于給定點(0.1 * 3)的距離內(nèi),例如 三個標(biāo)準(zhǔn)差。

n_iterations = 1000  # define the maximum step size  step_size = 0.1

接下來,我們可以執(zhí)行搜索并報告結(jié)果。

# perform the hill climbing search  best, score = hillclimbing(objective, bounds, n_iterations, step_size)  print('Done!')  print('f(%s) = %f' % (best, score))

結(jié)合在一起,下面列出了完整的示例。

# hill climbing search of a one-dimensional objective function  from numpy import asarray  from numpy.random import randn  from numpy.random import rand  from numpy.random import seed   # objective function  def objective(x):   return x[0]**2.0   # hill climbing local search algorithm  def hillclimbing(objective, bounds, n_iterations, step_size):   # generate an initial point   solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])   # evaluate the initial point   solution_eval = objective(solution)   # run the hill climb   for i in range(n_iterations):   # take a step    candidate = solution + randn(len(bounds)) * step_size    # evaluate candidate point    candidte_eval = objective(candidate)    # check if we should keep the new point    if candidte_eval <= solution_eval:     # store the new point     solution, solution_eval = candidate, candidte_eval     # report progress     print('>%d f(%s) = %.5f' % (i, solution, solution_eval))   return [solution, solution_eval]  # seed the pseudorandom number generator  seed(5)  # define range for input  bounds = asarray([[-5.0, 5.0]])  # define the total iterations n_iterations = 1000  # define the maximum step size  step_size = 0.1  # perform the hill climbing search  best, score = hillclimbing(objective, bounds, n_iterations, step_size)  print('Done!')  print('f(%s) = %f' % (best, score))

運行該示例將報告搜索進(jìn)度,包括每次檢測到改進(jìn)時的迭代次數(shù),該函數(shù)的輸入以及來自目標(biāo)函數(shù)的響應(yīng)。搜索結(jié)束時,找到最佳解決方案,并報告其評估結(jié)果。在這種情況下,我們可以看到在算法的1,000次迭代中有36處改進(jìn),并且該解決方案非常接近于0.0的最佳輸入,其計算結(jié)果為f(0.0)= 0.0。

>1 f([-2.74290923]) = 7.52355  >3 f([-2.65873147]) = 7.06885  >4 f([-2.52197291]) = 6.36035  >5 f([-2.46450214]) = 6.07377  >7 f([-2.44740961]) = 5.98981  >9 f([-2.28364676]) = 5.21504  >12 f([-2.19245939]) = 4.80688  >14 f([-2.01001538]) = 4.04016  >15 f([-1.86425287]) = 3.47544  >22 f([-1.79913002]) = 3.23687  >24 f([-1.57525573]) = 2.48143  >25 f([-1.55047719]) = 2.40398  >26 f([-1.51783757]) = 2.30383  >27 f([-1.49118756]) = 2.22364  >28 f([-1.45344116]) = 2.11249  >30 f([-1.33055275]) = 1.77037  >32 f([-1.17805016]) = 1.38780  >33 f([-1.15189314]) = 1.32686  >36 f([-1.03852644]) = 1.07854  >37 f([-0.99135322]) = 0.98278  >38 f([-0.79448984]) = 0.63121  >39 f([-0.69837955]) = 0.48773  >42 f([-0.69317313]) = 0.48049  >46 f([-0.61801423]) = 0.38194  >48 f([-0.48799625]) = 0.23814  >50 f([-0.22149135]) = 0.04906  >54 f([-0.20017144]) = 0.04007  >57 f([-0.15994446]) = 0.02558  >60 f([-0.15492485]) = 0.02400  >61 f([-0.03572481]) = 0.00128  >64 f([-0.03051261]) = 0.00093  >66 f([-0.0074283]) = 0.00006  >78 f([-0.00202357]) = 0.00000  >119 f([0.00128373]) = 0.00000  >120 f([-0.00040911]) = 0.00000  >314 f([-0.00017051]) = 0.00000  Done!  f([-0.00017051]) = 0.000000

以線圖的形式查看搜索的進(jìn)度可能很有趣,該線圖顯示了每次改進(jìn)后最佳解決方案的評估變化。每當(dāng)有改進(jìn)時,我們就可以更新hillclimbing()來跟蹤目標(biāo)函數(shù)的評估,并返回此分?jǐn)?shù)列表。

# hill climbing local search algorithm  def hillclimbing(objective, bounds, n_iterations, step_size):   # generate an initial point   solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])   # evaluate the initial point   solution_eval = objective(solution)   # run the hill climb  scores = list()   scores.append(solution_eval)   for i in range(n_iterations):    # take a step    candidate = solution + randn(len(bounds)) * step_size    # evaluate candidate point    candidte_eval = objective(candidate)    # check if we should keep the new point    if candidte_eval <= solution_eval:     # store the new point     solution, solution_eval = candidate, candidte_eval     # keep track of scores     scores.append(solution_eval)     # report progress     print('>%d f(%s) = %.5f' % (i, solution, solution_eval))   return [solution, solution_eval, scores]

然后,我們可以創(chuàng)建這些分?jǐn)?shù)的折線圖,以查看搜索過程中發(fā)現(xiàn)的每個改進(jìn)的目標(biāo)函數(shù)的相對變化。

# line plot of best scores  pyplot.plot(scores, '.-')  pyplot.xlabel('Improvement Number')  pyplot.ylabel('Evaluation f(x)')  pyplot.show()

結(jié)合在一起,下面列出了執(zhí)行搜索并繪制搜索過程中改進(jìn)解決方案的目標(biāo)函數(shù)得分的完整示例。

# hill climbing search of a one-dimensional objective function  from numpy import asarray  from numpy.random import randn  from numpy.random import rand  from numpy.random import seed  from matplotlib import pyplot   # objective function  def objective(x):   return x[0]**2.0  # hill climbing local search algorithm  def hillclimbing(objective, bounds, n_iterations, step_size):   # generate an initial point   solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])   # evaluate the initial point   solution_eval = objective(solution)   # run the hill climb   scores = list()   scores.append(solution_eval)   for i in range(n_iterations):    # take a step    candidate = solution + randn(len(bounds)) * step_size    # evaluate candidate point    candidte_eval = objective(candidate)    # check if we should keep the new point    if candidte_eval <= solution_eval:     # store the new point     solution, solution_eval = candidate, candidte_eval     # keep track of scores     scores.append(solution_eval)     # report progress     print('>%d f(%s) = %.5f' % (i, solution, solution_eval))   return [solution, solution_eval, scores]  # seed the pseudorandom number generator  seed(5)  # define range for input  bounds = asarray([[-5.0, 5.0]])  # define the total iterations  n_iterations = 1000  # define the maximum step size  step_size = 0.1  # perform the hill climbing search  best, score, scores = hillclimbing(objective, bounds, n_iterations, step_size)  print('Done!')  print('f(%s) = %f' % (best, score))  # line plot of best scores  pyplot.plot(scores, '.-')  pyplot.xlabel('Improvement Number')  pyplot.ylabel('Evaluation f(x)')  pyplot.show()

運行示例將執(zhí)行搜索,并像以前一樣報告結(jié)果。創(chuàng)建一個線形圖,顯示在爬山搜索期間每個改進(jìn)的目標(biāo)函數(shù)評估。在搜索過程中,我們可以看到目標(biāo)函數(shù)評估發(fā)生了約36個變化,隨著算法收斂到最優(yōu)值,初始變化較大,而在搜索結(jié)束時變化很小,難以察覺。

Python中怎么實現(xiàn)一個隨機爬山算法

鑒于目標(biāo)函數(shù)是一維的,因此可以像上面那樣直接繪制響應(yīng)面。通過將在搜索過程中找到的最佳候選解決方案繪制為響應(yīng)面中的點,來回顧搜索的進(jìn)度可能會很有趣。我們期望沿著響應(yīng)面到達(dá)最優(yōu)點的一系列點。這可以通過首先更新hillclimbing()函數(shù)以跟蹤每個最佳候選解決方案在搜索過程中的位置來實現(xiàn),然后返回最佳解決方案列表來實現(xiàn)。

# hill climbing local search algorithm  def hillclimbing(objective, bounds, n_iterations, step_size):   # generate an initial point   solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])   # evaluate the initial point   solution_eval = objective(solution)  # run the hill climb   solutions = list()   solutions.append(solution)   for i in range(n_iterations):    # take a step    candidate = solution + randn(len(bounds)) * step_size    # evaluate candidate point    candidte_eval = objective(candidate)    # check if we should keep the new point    if candidte_eval <= solution_eval:     # store the new point     solution, solution_eval = candidate, candidte_eval     # keep track of solutions     solutions.append(solution)    # report progress     print('>%d f(%s) = %.5f' % (i, solution, solution_eval))   return [solution, solution_eval, solutions]

然后,我們可以創(chuàng)建目標(biāo)函數(shù)響應(yīng)面的圖,并像以前那樣標(biāo)記最優(yōu)值。

# sample input range uniformly at 0.1 increments  inputs = arange(bounds[0,0], bounds[0,1], 0.1)  # create a line plot of input vs result  pyplot.plot(inputs, [objective([x]) for x in inputs], '--')  # draw a vertical line at the optimal input  pyplot.axvline(x=[0.0], ls='--', color='red')

最后,我們可以將搜索找到的候選解的序列繪制成黑點。

# plot the sample as black circles  pyplot.plot(solutions, [objective(x) for x in solutions], 'o', color='black')

結(jié)合在一起,下面列出了在目標(biāo)函數(shù)的響應(yīng)面上繪制改進(jìn)解序列的完整示例。

# hill climbing search of a one-dimensional objective function  from numpy import asarray  from numpy import arange  from numpy.random import randn  from numpy.random import rand  from numpy.random import seed  from matplotlib import pyplot  # objective function  def objective(x):   return x[0]**2.0  # hill climbing local search algorithm  def hillclimbing(objective, bounds, n_iterations, step_size):   # generate an initial point   solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])   # evaluate the initial point   solution_eval = objective(solution)   # run the hill climb   solutions = list()   solutions.append(solution)   for i in range(n_iterations):    # take a step    candidate = solution + randn(len(bounds)) * step_size    # evaluate candidate point    candidte_eval = objective(candidate)    # check if we should keep the new point    if candidte_eval <= solution_eval:     # store the new point     solution, solution_eval = candidate, candidte_eval     # keep track of solutions     solutions.append(solution)     # report progress     print('>%d f(%s) = %.5f' % (i, solution, solution_eval))   return [solution, solution_eval, solutions]  # seed the pseudorandom number generator  seed(5)  # define range for input  bounds = asarray([[-5.0, 5.0]])  # define the total iterations  n_iterations = 1000  # define the maximum step size  step_size = 0.1  # perform the hill climbing search  best, score, solutions = hillclimbing(objective, bounds, n_iterations, step_size)  print('Done!')  print('f(%s) = %f' % (best, score))  # sample input range uniformly at 0.1 increments  inputs = arange(bounds[0,0], bounds[0,1], 0.1)  # create a line plot of input vs result pyplot.plot(inputs, [objective([x]) for x in inputs], '--')  # draw a vertical line at the optimal input  pyplot.axvline(x=[0.0], ls='--', color='red')  # plot the sample as black circles  pyplot.plot(solutions, [objective(x) for x in solutions], 'o', color='black')  pyplot.show()

運行示例將執(zhí)行爬山搜索,并像以前一樣報告結(jié)果。像以前一樣創(chuàng)建一個響應(yīng)面圖,顯示函數(shù)的熟悉的碗形,并用垂直的紅線標(biāo)記函數(shù)的最佳狀態(tài)。在搜索過程中找到的最佳解決方案的順序顯示為黑點,沿著碗形延伸到最佳狀態(tài)。

Python中怎么實現(xiàn)一個隨機爬山算法

看完上述內(nèi)容,你們掌握Python中怎么實現(xiàn)一個隨機爬山算法的方法了嗎?如果還想學(xué)到更多技能或想了解更多相關(guān)內(nèi)容,歡迎關(guān)注億速云行業(yè)資訊頻道,感謝各位的閱讀!

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI