溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點(diǎn)擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

ApacheFlink中Flink數(shù)據(jù)流編程是怎樣的

發(fā)布時間:2021-09-14 10:41:50 來源:億速云 閱讀:94 作者:柒染 欄目:大數(shù)據(jù)

這期內(nèi)容當(dāng)中小編將會給大家?guī)碛嘘P(guān)ApacheFlink中Flink數(shù)據(jù)流編程是怎樣的,文章內(nèi)容豐富且以專業(yè)的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。

數(shù)據(jù)源可以通過StreamExecutionEnvironment.addSource(sourceFunction)方式來創(chuàng)建,F(xiàn)link也提供了一些內(nèi)置的數(shù)據(jù)源方便使用,例如readTextFile(path) readFile(),當(dāng)然,也可以寫一個自定義的數(shù)據(jù)源(可以通過實(shí)現(xiàn)SourceFunction方法,但是無法并行執(zhí)行?;蛘邔?shí)現(xiàn)可以并行實(shí)現(xiàn)的接口ParallelSourceFunction或者繼承RichParallelSourceFunction)

入門

首先做一個簡單入門,建立一個DataStreamSourceApp

Scala

object DataStreamSourceApp {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    socketFunction(env)
        env.execute("DataStreamSourceApp")
  }

  def socketFunction(env: StreamExecutionEnvironment): Unit = {
    val data=env.socketTextStream("192.168.152.45", 9999)
    data.print()
  }
}

這個方法將會從socket中讀取數(shù)據(jù),因此我們需要在192.168.152.45中開啟服務(wù):

nc -lk 9999

然后運(yùn)行DataStreamSourceApp,在服務(wù)器上輸入:

iie4bu@swarm-manager:~$ nc -lk 9999
apache
flink
spark

在控制臺中也會輸出:

3> apache
4> flink
1> spark

前面的 341表示的是并行度??梢酝ㄟ^設(shè)置setParallelism來操作:

data.print().setParallelism(1)

Java

public class JavaDataStreamSourceApp {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
        socketFunction(environment);
        environment.execute("JavaDataStreamSourceApp");
    }
    public static void socketFunction(StreamExecutionEnvironment executionEnvironment){
        DataStreamSource<String> data = executionEnvironment.socketTextStream("192.168.152.45", 9999);
        data.print().setParallelism(1);
    }
}

自定義添加數(shù)據(jù)源方式

Scala

實(shí)現(xiàn)SourceFunction接口

這種方式不能并行處理。

新建一個自定義數(shù)據(jù)源

class CustomNonParallelSourceFunction extends SourceFunction[Long]{

  var count=1L
  var isRunning = true


  override def run(ctx: SourceFunction.SourceContext[Long]): Unit = {
    while (isRunning){
      ctx.collect(count)
      count+=1
      Thread.sleep(1000)
    }
  }

  override def cancel(): Unit = {
    isRunning = false
  }
}

這個方法首先定義一個初始值count=1L,然后執(zhí)行的run方法,方法主要是輸出count,并且執(zhí)行加一操作,當(dāng)執(zhí)行cancel方法時結(jié)束。調(diào)用方法如下:

  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    //    socketFunction(env)
    nonParallelSourceFunction(env)
    env.execute("DataStreamSourceApp")
  }

  def nonParallelSourceFunction(env: StreamExecutionEnvironment): Unit = {
    val data=env.addSource(new CustomNonParallelSourceFunction())
    data.print()
  }

輸出結(jié)果就是控制臺一直輸出count值。

無法設(shè)置并行度,除非設(shè)置并行度是1.

val data=env.addSource(new CustomNonParallelSourceFunction()).setParallelism(3)

那么控制臺報錯:

Exception in thread "main" java.lang.IllegalArgumentException: Source: 1 is not a parallel source
	at org.apache.flink.streaming.api.datastream.DataStreamSource.setParallelism(DataStreamSource.java:55)
	at com.vincent.course05.DataStreamSourceApp$.nonParallelSourceFunction(DataStreamSourceApp.scala:16)
	at com.vincent.course05.DataStreamSourceApp$.main(DataStreamSourceApp.scala:11)
	at com.vincent.course05.DataStreamSourceApp.main(DataStreamSourceApp.scala)

繼承ParallelSourceFunction方法

import org.apache.flink.streaming.api.functions.source.{ParallelSourceFunction, SourceFunction}

class CustomParallelSourceFunction extends ParallelSourceFunction[Long]{

  var isRunning = true
  var count = 1L


  override def run(ctx: SourceFunction.SourceContext[Long]): Unit = {
    while(isRunning){
      ctx.collect(count)
      count+=1
      Thread.sleep(1000)
    }
  }

  override def cancel(): Unit = {
    isRunning=false
  }
}

方法的功能跟上面是一樣的。main方法如下:

  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    //    socketFunction(env)
//    nonParallelSourceFunction(env)
    parallelSourceFunction(env)


    env.execute("DataStreamSourceApp")
  }

  def parallelSourceFunction(env: StreamExecutionEnvironment): Unit = {
    val data=env.addSource(new CustomParallelSourceFunction()).setParallelism(3)
    data.print()
  }

可以設(shè)置并行度3,輸出結(jié)果如下:

2> 1
1> 1
2> 1
2> 2
3> 2
3> 2
3> 3
4> 3
4> 3

繼承RichParallelSourceFunction方法

class CustomRichParallelSourceFunction extends RichParallelSourceFunction[Long] {
  var isRunning = true
  var count = 1L


  override def run(ctx: SourceFunction.SourceContext[Long]): Unit = {
    while (isRunning) {
      ctx.collect(count)
      count += 1
      Thread.sleep(1000)
    }
  }

  override def cancel(): Unit = {
    isRunning = false
  }
}
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    //    socketFunction(env)
    //    nonParallelSourceFunction(env)
//    parallelSourceFunction(env)
    richParallelSourceFunction(env)

    env.execute("DataStreamSourceApp")
  }

  def richParallelSourceFunction(env: StreamExecutionEnvironment): Unit = {
    val data = env.addSource(new CustomRichParallelSourceFunction()).setParallelism(3)
    data.print()
  }

Java

實(shí)現(xiàn)SourceFunction接口

import org.apache.flink.streaming.api.functions.source.SourceFunction;

public class JavaCustomNonParallelSourceFunction implements SourceFunction<Long> {

    boolean isRunning = true;
    long count = 1;

    @Override
    public void run(SourceFunction.SourceContext ctx) throws Exception {
        while (isRunning) {
            ctx.collect(count);
            count+=1;
            Thread.sleep(1000);
        }
    }

    @Override
    public void cancel() {
        isRunning=false;
    }
}
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
//        socketFunction(environment);
        nonParallelSourceFunction(environment);
        environment.execute("JavaDataStreamSourceApp");

    }

    public static void nonParallelSourceFunction(StreamExecutionEnvironment executionEnvironment){
        DataStreamSource data = executionEnvironment.addSource(new JavaCustomNonParallelSourceFunction());
        data.print().setParallelism(1);
    }

當(dāng)設(shè)置并行度時:

        DataStreamSource data = executionEnvironment.addSource(new JavaCustomNonParallelSourceFunction()).setParallelism(2);

那么報錯異常:

Exception in thread "main" java.lang.IllegalArgumentException: Source: 1 is not a parallel source
	at org.apache.flink.streaming.api.datastream.DataStreamSource.setParallelism(DataStreamSource.java:55)
	at com.vincent.course05.JavaDataStreamSourceApp.nonParallelSourceFunction(JavaDataStreamSourceApp.java:16)
	at com.vincent.course05.JavaDataStreamSourceApp.main(JavaDataStreamSourceApp.java:10)

實(shí)現(xiàn)ParallelSourceFunction接口

import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction;

public class JavaCustomParallelSourceFunction implements ParallelSourceFunction<Long> {

    boolean isRunning = true;
    long count = 1;

    @Override
    public void run(SourceContext ctx) throws Exception {
        while (isRunning) {
            ctx.collect(count);
            count+=1;
            Thread.sleep(1000);
        }
    }

    @Override
    public void cancel() {
        isRunning=false;
    }
}
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
//        socketFunction(environment);
//        nonParallelSourceFunction(environment);
        parallelSourceFunction(environment);

        environment.execute("JavaDataStreamSourceApp");
    }

    public static void parallelSourceFunction(StreamExecutionEnvironment executionEnvironment){
        DataStreamSource data = executionEnvironment.addSource(new JavaCustomParallelSourceFunction()).setParallelism(2);
        data.print().setParallelism(1);
    }

可以設(shè)置并行度,輸出結(jié)果:

1
1
2
2
3
3
4
4
5
5

繼承抽象類RichParallelSourceFunction

public class JavaCustomRichParallelSourceFunction extends RichParallelSourceFunction<Long> {

    boolean isRunning = true;
    long count = 1;

    @Override
    public void run(SourceContext ctx) throws Exception {
        while (isRunning) {
            ctx.collect(count);
            count+=1;
            Thread.sleep(1000);
        }
    }

    @Override
    public void cancel() {
        isRunning=false;
    }
}
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
//        socketFunction(environment);
//        nonParallelSourceFunction(environment);
//        parallelSourceFunction(environment);
        richpParallelSourceFunction(environment);
        environment.execute("JavaDataStreamSourceApp");
    }

    public static void richpParallelSourceFunction(StreamExecutionEnvironment executionEnvironment){
        DataStreamSource data = executionEnvironment.addSource(new JavaCustomRichParallelSourceFunction()).setParallelism(2);
        data.print().setParallelism(1);
    }

輸出結(jié)果:

1
1
2
2
3
3
4
4
5
5
6
6

SourceFunction  ParallelSourceFunction  RichParallelSourceFunction類之間的關(guān)系

上述就是小編為大家分享的ApacheFlink中Flink數(shù)據(jù)流編程是怎樣的了,如果剛好有類似的疑惑,不妨參照上述分析進(jìn)行理解。如果想知道更多相關(guān)知識,歡迎關(guān)注億速云行業(yè)資訊頻道。

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報,并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI