溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

TF-IDF算法的原理是什么

發(fā)布時(shí)間:2021-12-16 15:01:56 來源:億速云 閱讀:223 作者:iii 欄目:云計(jì)算

本篇內(nèi)容主要講解“TF-IDF算法的原理是什么”,感興趣的朋友不妨來看看。本文介紹的方法操作簡(jiǎn)單快捷,實(shí)用性強(qiáng)。下面就讓小編來帶大家學(xué)習(xí)“TF-IDF算法的原理是什么”吧!

概念

  • TF-IDF(term frequency–inverse document frequency)

    • 是一種用于資訊檢索與資訊探勘的常用加權(quán)技術(shù)。

    • TF-IDF是一種統(tǒng)計(jì)方法,用以評(píng)估一字詞對(duì)于一個(gè)文件集或一個(gè)語料庫(kù)中的其中一份文件的重要程度。

    • 字詞的重要性隨著它在文件中出現(xiàn)的次數(shù)成正比增加,但同時(shí)會(huì)隨著它在語料庫(kù)中出現(xiàn)的頻率成反比下降。

    • TF-IDF加權(quán)的各種形式常被搜尋引擎應(yīng)用,作為文件與用戶查詢之間相關(guān)程度的度量或評(píng)級(jí)。除了TF-IDF以外,因特網(wǎng)上的搜尋引擎還會(huì)使用基于連結(jié)分析的評(píng)級(jí)方法,以確定文件在搜尋結(jié)果中出現(xiàn)的順序。

原理

  • 詞頻 (term frequency, TF)

    • 指的是某一個(gè)給定的詞語在一份給定的文件中出現(xiàn)的次數(shù)。這個(gè)數(shù)字通常會(huì)被歸一化(分子一般小于分母 區(qū)別于IDF),以防止它偏向長(zhǎng)的文件。(同一個(gè)詞語在長(zhǎng)文件里可能會(huì)比短文件有更高的詞頻,而不管該詞語重要與否。)

    • 逆向文件頻率 (inverse document frequency, IDF) 是一個(gè)詞語普遍重要性的度量。某一特定詞語的IDF,可以由總文件數(shù)目除以包含該詞語之文件的數(shù)目,再將得到的商取對(duì)數(shù)得到。

    • 某一特定文件內(nèi)的高詞語頻率,以及該詞語在整個(gè)文件集合中的低文件頻率,可以產(chǎn)生出高權(quán)重的TF-IDF。因此,TF-IDF傾向于過濾掉常見的詞語,保留重要的詞語。

  • 逆向文件頻率(inverse document frequency,IDF)

    • 一個(gè)詞語普遍重要性的度量。某一特定詞語的IDF,可以由總文件數(shù)目除以包含該詞語之文件的數(shù)目,再將得到的商取對(duì)數(shù)得到: TF-IDF算法的原理是什么

    • 其中:|D|:語料庫(kù)中的文件總數(shù)

    • TF-IDF算法的原理是什么:包含詞語 TF-IDF算法的原理是什么的文件數(shù)目(即 TF-IDF算法的原理是什么如果該詞語不在語料庫(kù)中,就會(huì)導(dǎo)致被除數(shù)為零,因此一般情況下使用 TF-IDF算法的原理是什么

    • 然后 TF-IDF算法的原理是什么

    • 某一特定文件內(nèi)的高詞語頻率,以及該詞語在整個(gè)文件集合中的低文件頻率,可以產(chǎn)生出高權(quán)重的TF-IDF。因此,TF-IDF傾向于過濾掉常見的詞語,保留重要的詞語。

TFIDF的主要思想是

  • 如果某個(gè)詞或短語在一篇文章中出現(xiàn)的頻率TF高,并且在其他文章中很少出現(xiàn),則認(rèn)為此詞或者短語具有很好的類別區(qū)分能力,適合用來分類。TFIDF實(shí)際上是:TF * IDF,TF詞頻(Term Frequency),IDF反文檔頻率(Inverse Document Frequency)。TF表示詞條在文檔d中出現(xiàn)的頻率(另一說:TF詞頻(Term Frequency)指的是某一個(gè)給定的詞語在該文件中出現(xiàn)的次數(shù))。IDF的主要思想是:如果包含詞條t的文檔越少,也就是n越小,IDF越大,則說明詞條t具有很好的類別區(qū)分能力。如果某一類文檔C中包含詞條t的文檔數(shù)為m,而其它類包含t的文檔總數(shù)為k,顯然所有包含t的文檔數(shù)n=m+k,當(dāng)m大的時(shí)候,n也大,按照IDF公式得到的IDF的值會(huì)小,就說明該詞條t類別區(qū)分能力不強(qiáng)。(另一說:IDF反文檔頻率(Inverse Document Frequency)是指果包含詞條的文檔越少,IDF越大,則說明詞條具有很好的類別區(qū)分能力。)但是實(shí)際上,如果一個(gè)詞條在一個(gè)類的文檔中頻繁出現(xiàn),則說明該詞條能夠很好代表這個(gè)類的文本的特征,這樣的詞條應(yīng)該給它們賦予較高的權(quán)重,并選來作為該類文本的特征詞以區(qū)別與其它類文檔。這就是IDF的不足之處.

  • 在一份給定的文件里,詞頻(termfrequency,TF)指的是某一個(gè)給定的詞語在該文件中出現(xiàn)的頻率。這個(gè)數(shù)字是對(duì)詞數(shù)(termcount)的歸一化,以防止它偏向長(zhǎng)的文件。(同一個(gè)詞語在長(zhǎng)文件里可能會(huì)比短文件有更高的詞數(shù),而不管該詞語重要與否。)對(duì)于在某一特定文件里的詞語來說,它的重要性可表示為:

  • TF-IDF算法的原理是什么

  • 以上式子中 TF-IDF算法的原理是什么是該詞在文件 TF-IDF算法的原理是什么中的出現(xiàn)次數(shù),而分母則是在文件TF-IDF算法的原理是什么 中所有字詞的出現(xiàn)次數(shù)之和。

到此,相信大家對(duì)“TF-IDF算法的原理是什么”有了更深的了解,不妨來實(shí)際操作一番吧!這里是億速云網(wǎng)站,更多相關(guān)內(nèi)容可以進(jìn)入相關(guān)頻道進(jìn)行查詢,關(guān)注我們,繼續(xù)學(xué)習(xí)!

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI