溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

PyTorch模型訓(xùn)練實(shí)戰(zhàn)技巧有哪些

發(fā)布時(shí)間:2021-12-04 18:31:36 來源:億速云 閱讀:196 作者:柒染 欄目:大數(shù)據(jù)

這篇文章將為大家詳細(xì)講解有關(guān)PyTorch模型訓(xùn)練實(shí)戰(zhàn)技巧有哪些,文章內(nèi)容質(zhì)量較高,因此小編分享給大家做個(gè)參考,希望大家閱讀完這篇文章后對(duì)相關(guān)知識(shí)有一定的了解。

導(dǎo)讀  

一個(gè)step by step的指南,非常的實(shí)用。

 

讓我們面對(duì)現(xiàn)實(shí)吧,你的模型可能還停留在石器時(shí)代。我敢打賭你仍然使用32位精度或GASP甚至只在一個(gè)GPU上訓(xùn)練。

我明白,網(wǎng)上都是各種神經(jīng)網(wǎng)絡(luò)加速指南,但是一個(gè)checklist都沒有(現(xiàn)在有了),使用這個(gè)清單,一步一步確保你能榨干你模型的所有性能。

本指南從最簡(jiǎn)單的結(jié)構(gòu)到最復(fù)雜的改動(dòng)都有,可以使你的網(wǎng)絡(luò)得到最大的好處。我會(huì)給你展示示例Pytorch代碼以及可以在Pytorch- lightning Trainer中使用的相關(guān)flags,這樣你可以不用自己編寫這些代碼!

Pytorch-Lightning


你可以在Pytorch的庫Pytorch- lightning中找到我在這里討論的每一個(gè)優(yōu)化。Lightning是在Pytorch之上的一個(gè)封裝,它可以自動(dòng)訓(xùn)練,同時(shí)讓研究人員完全控制關(guān)鍵的模型組件。Lightning 使用最新的最佳實(shí)踐,并將你可能出錯(cuò)的地方最小化。

我們?yōu)镸NIST定義LightningModel并使用Trainer來訓(xùn)練模型。

from pytorch_lightning import Trainer
model = LightningModule(…)
trainer = Trainer()
trainer.fit(model)
   

1. DataLoaders

PyTorch模型訓(xùn)練實(shí)戰(zhàn)技巧有哪些

這可能是最容易獲得速度增益的地方。保存h6py或numpy文件以加速數(shù)據(jù)加載的時(shí)代已經(jīng)一去不復(fù)返了,使用Pytorch dataloader加載圖像數(shù)據(jù)很簡(jiǎn)單(對(duì)于NLP數(shù)據(jù),請(qǐng)查看TorchText)。

在lightning中,你不需要指定訓(xùn)練循環(huán),只需要定義dataLoaders和Trainer就會(huì)在需要的時(shí)候調(diào)用它們。

dataset = MNIST(root=self.hparams.data_root, train=train, download=True)
loader = DataLoader(dataset, batch_size=32, shuffle=True)
for batch in loader:
  x, y = batch
  model.training_step(x, y)
  ...
   

2. DataLoaders 中的 workers 的數(shù)量

PyTorch模型訓(xùn)練實(shí)戰(zhàn)技巧有哪些

另一個(gè)加速的神奇之處是允許批量并行加載。因此,您可以一次裝載nb_workers個(gè)batch,而不是一次裝載一個(gè)batch。

# slow
loader = DataLoader(dataset, batch_size=32, shuffle=True)
# fast (use 10 workers)
loader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=10)
   

3. Batch size

PyTorch模型訓(xùn)練實(shí)戰(zhàn)技巧有哪些

在開始下一個(gè)優(yōu)化步驟之前,將batch size增大到CPU-RAM或GPU-RAM所允許的最大范圍。

下一節(jié)將重點(diǎn)介紹如何幫助減少內(nèi)存占用,以便你可以繼續(xù)增加batch size。

記住,你可能需要再次更新你的學(xué)習(xí)率。一個(gè)好的經(jīng)驗(yàn)法則是,如果batch size加倍,那么學(xué)習(xí)率就加倍。

 

4. 梯度累加

在你已經(jīng)達(dá)到計(jì)算資源上限的情況下,你的batch size仍然太小(比如8),然后我們需要模擬一個(gè)更大的batch size來進(jìn)行梯度下降,以提供一個(gè)良好的估計(jì)。

假設(shè)我們想要達(dá)到128的batch size大小。我們需要以batch size為8執(zhí)行16個(gè)前向傳播和向后傳播,然后再執(zhí)行一次優(yōu)化步驟。

# clear last step
optimizer.zero_grad()

# 16 accumulated gradient steps
scaled_loss = 0
for accumulated_step_i in range(16):
     out = model.forward()
     loss = some_loss(out,y)    
     loss.backward()
      scaled_loss += loss.item()
      
# update weights after 8 steps. effective batch = 8*16
optimizer.step()

# loss is now scaled up by the number of accumulated batches
actual_loss = scaled_loss / 16
 

在lightning中,全部都給你做好了,只需要設(shè)置accumulate_grad_batches=16

trainer = Trainer(accumulate_grad_batches=16)
trainer.fit(model)
   

5. 保留的計(jì)算圖

PyTorch模型訓(xùn)練實(shí)戰(zhàn)技巧有哪些

一個(gè)最簡(jiǎn)單撐爆你的內(nèi)存的方法是為了記錄日志存儲(chǔ)你的loss。

losses = []
...
losses.append(loss)

print(f'current loss: {torch.mean(losses)'})
 

上面的問題是,loss仍然包含有整個(gè)圖的副本。在這種情況下,調(diào)用.item()來釋放它。

![1_CER3v8cok2UOBNsmnBrzPQ](9 Tips For Training Lightning-Fast Neural Networks In Pytorch.assets/1_CER3v8cok2UOBNsmnBrzPQ.gif)# bad
losses.append(loss)

# good
losses.append(loss.item())
 

Lightning會(huì)非常小心,確保不會(huì)保留計(jì)算圖的副本。

 

6. 單個(gè)GPU訓(xùn)練

PyTorch模型訓(xùn)練實(shí)戰(zhàn)技巧有哪些

一旦你已經(jīng)完成了前面的步驟,是時(shí)候進(jìn)入GPU訓(xùn)練了。在GPU上的訓(xùn)練將使多個(gè)GPU cores之間的數(shù)學(xué)計(jì)算并行化。你得到的加速取決于你所使用的GPU類型。我推薦個(gè)人用2080Ti,公司用V100。

乍一看,這可能會(huì)讓你不知所措,但你真的只需要做兩件事:1)移動(dòng)你的模型到GPU, 2)每當(dāng)你運(yùn)行數(shù)據(jù)通過它,把數(shù)據(jù)放到GPU上。

# put model on GPU
model.cuda(0)

# put data on gpu (cuda on a variable returns a cuda copy)
x = x.cuda(0)

# runs on GPU now
model(x)
 

如果你使用Lightning,你什么都不用做,只需要設(shè)置Trainer(gpus=1)。

# ask lightning to use gpu 0 for training
trainer = Trainer(gpus=[0])
trainer.fit(model)
 

在GPU上進(jìn)行訓(xùn)練時(shí),要注意的主要事情是限制CPU和GPU之間的傳輸次數(shù)。

# expensive
x = x.cuda(0)# very expensive
x = x.cpu()
x = x.cuda(0)
 

如果內(nèi)存耗盡,不要將數(shù)據(jù)移回CPU以節(jié)省內(nèi)存。在求助于GPU之前,嘗試以其他方式優(yōu)化你的代碼或GPU之間的內(nèi)存分布。

另一件需要注意的事情是調(diào)用強(qiáng)制GPU同步的操作。清除內(nèi)存緩存就是一個(gè)例子。

# really bad idea. Stops all the GPUs until they all catch up
torch.cuda.empty_cache()
 

但是,如果使用Lightning,惟一可能出現(xiàn)問題的地方是在定義Lightning Module時(shí)。Lightning會(huì)特別注意不去犯這類錯(cuò)誤。

 

7. 16-bit 精度

16bit精度是將內(nèi)存占用減半的驚人技術(shù)。大多數(shù)模型使用32bit精度數(shù)字進(jìn)行訓(xùn)練。然而,最近的研究發(fā)現(xiàn),16bit模型也可以工作得很好。混合精度意味著對(duì)某些內(nèi)容使用16bit,但將權(quán)重等內(nèi)容保持在32bit。

要在Pytorch中使用16bit精度,請(qǐng)安裝NVIDIA的apex庫,并對(duì)你的模型進(jìn)行這些更改。

# enable 16-bit on the model and the optimizer
model, optimizers = amp.initialize(model, optimizers, opt_level='O2')

# when doing .backward, let amp do it so it can scale the loss
with amp.scale_loss(loss, optimizer) as scaled_loss:                      
    scaled_loss.backward()
 

amp包會(huì)處理好大部分事情。如果梯度爆炸或趨向于0,它甚至?xí)s放loss。

在lightning中,啟用16bit并不需要修改模型中的任何內(nèi)容,也不需要執(zhí)行我上面所寫的操作。設(shè)置Trainer(precision=16)就可以了。

trainer = Trainer(amp_level='O2', use_amp=False)
trainer.fit(model)
   

8. 移動(dòng)到多個(gè)GPUs中

現(xiàn)在,事情變得非常有趣了。有3種(也許更多?)方法來進(jìn)行多GPU訓(xùn)練。

分batch訓(xùn)練

PyTorch模型訓(xùn)練實(shí)戰(zhàn)技巧有哪些

A) 拷貝模型到每個(gè)GPU中,B) 給每個(gè)GPU一部分batch  
 

第一種方法被稱為“分batch訓(xùn)練”。該策略將模型復(fù)制到每個(gè)GPU上,每個(gè)GPU獲得batch的一部分。

# copy model on each GPU and give a fourth of the batch to each
model = DataParallel(model, devices=[0, 1, 2 ,3])

# out has 4 outputs (one for each gpu)
out = model(x.cuda(0))
 

在lightning中,你只需要增加GPUs的數(shù)量,然后告訴trainer,其他什么都不用做。

# ask lightning to use 4 GPUs for training
trainer = Trainer(gpus=[0, 1, 2, 3])
trainer.fit(model)
 

模型分布訓(xùn)練

PyTorch模型訓(xùn)練實(shí)戰(zhàn)技巧有哪些

將模型的不同部分放在不同的GPU上,batch按順序移動(dòng)  
 

有時(shí)你的模型可能太大不能完全放到內(nèi)存中。例如,帶有編碼器和解碼器的序列到序列模型在生成輸出時(shí)可能會(huì)占用20GB RAM。在本例中,我們希望將編碼器和解碼器放在獨(dú)立的GPU上。

# each model is sooo big we can't fit both in memory
encoder_rnn.cuda(0)
decoder_rnn.cuda(1)

# run input through encoder on GPU 0
encoder_out = encoder_rnn(x.cuda(0))

# run output through decoder on the next GPU
out = decoder_rnn(encoder_out.cuda(1))

# normally we want to bring all outputs back to GPU 0
out = out.cuda(0)
 

對(duì)于這種類型的訓(xùn)練,在Lightning中不需要指定任何GPU,你應(yīng)該把LightningModule中的模塊放到正確的GPU上。

class MyModule(LightningModule):
    def __init__():
        self.encoder = RNN(...)
        self.decoder = RNN(...)
    def forward(x):
        # models won't be moved after the first forward because 
        # they are already on the correct GPUs
        self.encoder.cuda(0)
        self.decoder.cuda(1)
        out = self.encoder(x)
        out = self.decoder(out.cuda(1))
        
# don't pass GPUs to trainer
model = MyModule()
trainer = Trainer()
trainer.fit(model)
 

兩者混合

在上面的情況下,編碼器和解碼器仍然可以從并行化操作中獲益。

# change these lines
self.encoder = RNN(...)
self.decoder = RNN(...)

# to these
# now each RNN is based on a different gpu set
self.encoder = DataParallel(self.encoder, devices=[0, 1, 2, 3])
self.decoder = DataParallel(self.encoder, devices=[4, 5, 6, 7])

# in forward...
out = self.encoder(x.cuda(0))

# notice inputs on first gpu in device
sout = self.decoder(out.cuda(4))  # <--- the 4 here
 

使用多個(gè)GPU時(shí)要考慮的注意事項(xiàng):

  • 如果模型已經(jīng)在GPU上了,model.cuda()不會(huì)做任何事情。
  • 總是把輸入放在設(shè)備列表中的第一個(gè)設(shè)備上。
  • 在設(shè)備之間傳輸數(shù)據(jù)是昂貴的,把它作為最后的手段。
  • 優(yōu)化器和梯度會(huì)被保存在GPU 0上,因此,GPU 0上使用的內(nèi)存可能會(huì)比其他GPU大得多。
 

9. 多節(jié)點(diǎn)GPU訓(xùn)練

PyTorch模型訓(xùn)練實(shí)戰(zhàn)技巧有哪些

每臺(tái)機(jī)器上的每個(gè)GPU都有一個(gè)模型的副本。每臺(tái)機(jī)器獲得數(shù)據(jù)的一部分,并且只在那部分上訓(xùn)練。每臺(tái)機(jī)器都能同步梯度。

如果你已經(jīng)做到了這一步,那么你現(xiàn)在可以在幾分鐘內(nèi)訓(xùn)練Imagenet了!這并沒有你想象的那么難,但是它可能需要你對(duì)計(jì)算集群的更多知識(shí)。這些說明假設(shè)你正在集群上使用SLURM。

Pytorch允許多節(jié)點(diǎn)訓(xùn)練,通過在每個(gè)節(jié)點(diǎn)上復(fù)制每個(gè)GPU上的模型并同步梯度。所以,每個(gè)模型都是在每個(gè)GPU上獨(dú)立初始化的,本質(zhì)上獨(dú)立地在數(shù)據(jù)的一個(gè)分區(qū)上訓(xùn)練,除了它們都從所有模型接收梯度更新。

在高層次上:

  1. 在每個(gè)GPU上初始化一個(gè)模型的副本(確保設(shè)置種子,讓每個(gè)模型初始化到相同的權(quán)重,否則它會(huì)失敗)。
  2. 將數(shù)據(jù)集分割成子集(使用DistributedSampler)。每個(gè)GPU只在它自己的小子集上訓(xùn)練。
  3. 在.backward()上,所有副本都接收到所有模型的梯度副本。這是模型之間唯一一次的通信。

Pytorch有一個(gè)很好的抽象,叫做DistributedDataParallel,它可以幫你實(shí)現(xiàn)這個(gè)功能。要使用DDP,你需要做4的事情:

def tng_dataloader():
     d = MNIST()
     
     # 4: Add distributed sampler
     # sampler sends a portion of tng data to each machine
     dist_sampler = DistributedSampler(dataset)
     dataloader = DataLoader(d, shuffle=False, sampler=dist_sampler)
     
def main_process_entrypoint(gpu_nb):
     # 2: set up connections  between all gpus across all machines
     # all gpus connect to a single GPU "root"
     # the default uses env://
     world = nb_gpus * nb_nodes
     dist.init_process_group("nccl", rank=gpu_nb, world_size=world)
     
     # 3: wrap model in DPP
     torch.cuda.set_device(gpu_nb)
     model.cuda(gpu_nb)
     model = DistributedDataParallel(model, device_ids=[gpu_nb])
     
     # train your model now...
     
if  __name__ == '__main__':
     # 1: spawn number of processes
     # your cluster will call main for each machine
     mp.spawn(main_process_entrypoint, nprocs=8)
 

然而,在Lightning中,只需設(shè)置節(jié)點(diǎn)數(shù)量,它就會(huì)為你處理其余的事情。

# train on 1024 gpus across 128 nodes
trainer = Trainer(nb_gpu_nodes=128, gpus=[0, 1, 2, 3, 4, 5, 6, 7])
 

Lightning還附帶了一個(gè)SlurmCluster管理器,可以方便地幫助你提交SLURM作業(yè)的正確詳細(xì)信息。

 

10. 在單個(gè)節(jié)點(diǎn)上多GPU更快的訓(xùn)練

事實(shí)證明,distributedDataParallel比DataParallel快得多,因?yàn)樗粓?zhí)行梯度同步的通信。所以,一個(gè)好的hack是使用distributedDataParallel替換DataParallel,即使是在單機(jī)上進(jìn)行訓(xùn)練。

在Lightning中,這很容易通過將distributed_backend設(shè)置為ddp和設(shè)置GPUs的數(shù)量來實(shí)現(xiàn)。

# train on 4 gpus on the same machine MUCH faster than DataParallel
trainer = Trainer(distributed_backend='ddp', gpus=[0, 1, 2, 3])
   

對(duì)模型加速的思考

盡管本指南將為你提供了一系列提高網(wǎng)絡(luò)速度的技巧,但我還是要給你解釋一下如何通過查找瓶頸來思考問題。

我將模型分成幾個(gè)部分:

首先,我要確保在數(shù)據(jù)加載中沒有瓶頸。為此,我使用了我所描述的現(xiàn)有數(shù)據(jù)加載解決方案,但是如果沒有一種解決方案滿足你的需要,請(qǐng)考慮離線處理和緩存到高性能數(shù)據(jù)存儲(chǔ)中,比如h6py。

接下來看看你在訓(xùn)練步驟中要做什么。確保你的前向傳播速度快,避免過多的計(jì)算以及最小化CPU和GPU之間的數(shù)據(jù)傳輸。最后,避免做一些會(huì)降低GPU速度的事情(本指南中有介紹)。

接下來,我試圖最大化我的batch size,這通常是受GPU內(nèi)存大小的限制。現(xiàn)在,需要關(guān)注在使用大的batch size的時(shí)候如何在多個(gè)GPUs上分布并最小化延遲(比如,我可能會(huì)嘗試著在多個(gè)gpu上使用8000 +的有效batch size)。

然而,你需要小心大的batch size。

關(guān)于PyTorch模型訓(xùn)練實(shí)戰(zhàn)技巧有哪些就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,可以學(xué)到更多知識(shí)。如果覺得文章不錯(cuò),可以把它分享出去讓更多的人看到。

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI