溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點(diǎn)擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

Java高并發(fā)系統(tǒng)限流的方法是什么

發(fā)布時間:2021-12-02 14:04:28 來源:億速云 閱讀:108 作者:iii 欄目:開發(fā)技術(shù)

本篇內(nèi)容主要講解“Java高并發(fā)系統(tǒng)限流的方法是什么”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實(shí)用性強(qiáng)。下面就讓小編來帶大家學(xué)習(xí)“Java高并發(fā)系統(tǒng)限流的方法是什么”吧!

緩存

緩存比較好理解,在大型高并發(fā)系統(tǒng)中,如果沒有緩存數(shù)據(jù)庫將分分鐘被爆,系統(tǒng)也會瞬間癱瘓。

使用緩存不單單能夠提升系統(tǒng)訪問速度、提高并發(fā)訪問量,也是保護(hù)數(shù)據(jù)庫、保護(hù)系統(tǒng)的有效方式。大型網(wǎng)站一般主要是“讀”,緩存的使用很容易被想到。

在大型“寫”系統(tǒng)中,緩存也常常扮演著非常重要的角色。比如累積一些數(shù)據(jù)批量寫入,內(nèi)存里面的緩存隊列(生產(chǎn)消費(fèi)),以及 HBase  寫數(shù)據(jù)的機(jī)制等等也都是通過緩存提升系統(tǒng)的吞吐量或者實(shí)現(xiàn)系統(tǒng)的保護(hù)措施。

甚至消息中間件,你也可以認(rèn)為是一種分布式的數(shù)據(jù)緩存。

降級

服務(wù)降級是當(dāng)服務(wù)器壓力劇增的情況下,根據(jù)當(dāng)前業(yè)務(wù)情況及流量對一些服務(wù)和頁面有策略的降級,以此釋放服務(wù)器資源以保證核心任務(wù)的正常運(yùn)行。

降級往往會指定不同的級別,面臨不同的異常等級執(zhí)行不同的處理。根據(jù)服務(wù)方式:可以拒接服務(wù),可以延遲服務(wù),也有時候可以隨機(jī)服務(wù)。

根據(jù)服務(wù)范圍:可以砍掉某個功能,也可以砍掉某些模塊??傊?wù)降級需要根據(jù)不同的業(yè)務(wù)需求采用不同的降級策略。主要的目的就是服務(wù)雖然有損但是總比沒有好。

限流

限流可以認(rèn)為是服務(wù)降級的一種,限流就是限制系統(tǒng)的輸入和輸出流量以達(dá)到保護(hù)系統(tǒng)的目的。

一般來說,系統(tǒng)的吞吐量是可以被測算的,為了保證系統(tǒng)的穩(wěn)定運(yùn)行,一旦達(dá)到需要限制的閾值,就需要限制流量并采取一些措施以完成限制流量的目的。

比如:延遲處理,拒絕處理,或者部分拒絕處理等等。

限流的算法

常見的限流算法有:計數(shù)器、漏桶和令牌桶算法。

計數(shù)器

計數(shù)器是最簡單粗暴的算法。比如某個服務(wù)最多只能每秒鐘處理 100 個請求。

我們可以設(shè)置一個 1 秒鐘的滑動窗口,窗口中有 10 個格子,每個格子 100 毫秒,每 100  毫秒移動一次,每次移動都需要記錄當(dāng)前服務(wù)請求的次數(shù)。

內(nèi)存中需要保存 10 次的次數(shù),可以用數(shù)據(jù)結(jié)構(gòu) LinkedList 來實(shí)現(xiàn)。格子每次移動的時候判斷一次,當(dāng)前訪問次數(shù)和 LinkedList  中最后一個相差是否超過 100,如果超過就需要限流了。

Java高并發(fā)系統(tǒng)限流的方法是什么

很明顯,當(dāng)滑動窗口的格子劃分的越多,那么滑動窗口的滾動就越平滑,限流的統(tǒng)計就會越精確。

示例代碼如下:

//服務(wù)訪問次數(shù),可以放在Redis中,實(shí)現(xiàn)分布式系統(tǒng)的訪問計數(shù) Long counter = 0L; //使用LinkedList來記錄滑動窗口的10個格子。 LinkedList<Long> ll = new LinkedList<Long>();  public static void main(String[] args) {     Counter counter = new Counter();      counter.doCheck(); }  private void doCheck() {     while (true)     {         ll.addLast(counter);          if (ll.size() > 10)         {             ll.removeFirst();         }          //比較最后一個和第一個,兩者相差一秒         if ((ll.peekLast() - ll.peekFirst()) > 100)         {             //To limit rate         }          Thread.sleep(100);     } }

漏桶算法

漏桶算法即 leaky bucket 是一種非常常用的限流算法,可以用來實(shí)現(xiàn)流量整形(Traffic Shaping)和流量控制(Traffic  Policing)。

貼了一張示意圖幫助大家理解:

Java高并發(fā)系統(tǒng)限流的方法是什么

漏桶算法的主要概念如下:

  • 一個固定容量的漏桶,按照常量固定速率流出水滴。

  • 如果桶是空的,則不需流出水滴。

  • 可以以任意速率流入水滴到漏桶。

  • 如果流入水滴超出了桶的容量,則流入的水滴溢出了(被丟棄),而漏桶容量是不變的。

漏桶算法比較好實(shí)現(xiàn),在單機(jī)系統(tǒng)中可以使用隊列來實(shí)現(xiàn)(.Net 中 TPL DataFlow  可以較好的處理類似的問題,你可以在這里找到相關(guān)的介紹),在分布式環(huán)境中消息中間件或者 Redis 都是可選的方案。

令牌桶算法

令牌桶算法是一個存放固定容量令牌(token)的桶,按照固定速率往桶里添加令牌。

令牌桶算法基本可以用下面的幾個概念來描述:

  • 令牌將按照固定的速率被放入令牌桶中。比如每秒放 10 個。

  • 桶中最多存放 b 個令牌,當(dāng)桶滿時,新添加的令牌被丟棄或拒絕。

  • 當(dāng)一個 n 個字節(jié)大小的數(shù)據(jù)包到達(dá),將從桶中刪除 n 個令牌,接著數(shù)據(jù)包被發(fā)送到網(wǎng)絡(luò)上。

  • 如果桶中的令牌不足 n 個,則不會刪除令牌,且該數(shù)據(jù)包將被限流(要么丟棄,要么緩沖區(qū)等待)。

如下圖:

Java高并發(fā)系統(tǒng)限流的方法是什么

令牌算法是根據(jù)放令牌的速率去控制輸出的速率,也就是上圖的 to network 的速率。to network  我們可以理解為消息的處理程序,執(zhí)行某段業(yè)務(wù)或者調(diào)用某個 RPC。

漏桶和令牌桶的比較

令牌桶可以在運(yùn)行時控制和調(diào)整數(shù)據(jù)處理的速率,處理某時的突發(fā)流量。

放令牌的頻率增加可以提升整體數(shù)據(jù)處理的速度,而通過每次獲取令牌的個數(shù)增加或者放慢令牌的發(fā)放速度可以降低整體數(shù)據(jù)處理速度。

而漏桶不行,因為它的流出速率是固定的,程序處理速度也是固定的。整體而言,令牌桶算法更優(yōu),但是實(shí)現(xiàn)更為復(fù)雜一些。

限流算法實(shí)現(xiàn)

Guava

Guava 是一個 Google 開源項目,包含了若干被 Google 的 Java 項目廣泛依賴的核心庫,其中的 RateLimiter  提供了令牌桶算法實(shí)現(xiàn):平滑突發(fā)限流(SmoothBursty)和平滑預(yù)熱限流(SmoothWarmingUp)實(shí)現(xiàn)。

①常規(guī)速率:創(chuàng)建一個限流器,設(shè)置每秒放置的令牌數(shù):2 個。

返回的 RateLimiter 對象可以保證 1 秒內(nèi)不會給超過 2 個令牌,并且是固定速率的放置。達(dá)到平滑輸出的效果:

public void test() {     /**      * 創(chuàng)建一個限流器,設(shè)置每秒放置的令牌數(shù):2個。速率是每秒可以2個的消息。      * 返回的RateLimiter對象可以保證1秒內(nèi)不會給超過2個令牌,并且是固定速率的放置。達(dá)到平滑輸出的效果      */     RateLimiter r = RateLimiter.create(2);      while (true)     {         /**          * acquire()獲取一個令牌,并且返回這個獲取這個令牌所需要的時間。如果桶里沒有令牌則等待,直到有令牌。          * acquire(N)可以獲取多個令牌。          */         System.out.println(r.acquire());     } }

上面代碼執(zhí)行的結(jié)果如下圖,基本是 0.5 秒一個數(shù)據(jù)。拿到令牌后才能處理數(shù)據(jù),達(dá)到輸出數(shù)據(jù)或者調(diào)用接口的平滑效果。

acquire() 的返回值是等待令牌的時間,如果需要對某些突發(fā)的流量進(jìn)行處理的話,可以對這個返回值設(shè)置一個閾值,根據(jù)不同的情況進(jìn)行處理,比如過期丟棄。

Java高并發(fā)系統(tǒng)限流的方法是什么

②突發(fā)流量:突發(fā)流量可以是突發(fā)的多,也可以是突發(fā)的少。首先來看個突發(fā)多的例子。還是上面例子的流量,每秒 2 個數(shù)據(jù)令牌。

如下代碼使用 acquire 方法,指定參數(shù):

System.out.println(r.acquire(2));  System.out.println(r.acquire(1));  System.out.println(r.acquire(1));  System.out.println(r.acquire(1));

得到如下類似的輸出。

Java高并發(fā)系統(tǒng)限流的方法是什么

如果要一次新處理更多的數(shù)據(jù),則需要更多的令牌。代碼首先獲取 2 個令牌,那么下一個令牌就不是 0.5 秒之后獲得了,還是 1  秒以后,之后又恢復(fù)常規(guī)速度。

這是一個突發(fā)多的例子,如果是突發(fā)沒有流量,如下代碼:

System.out.println(r.acquire(1));  Thread.sleep(2000);  System.out.println(r.acquire(1));  System.out.println(r.acquire(1));  System.out.println(r.acquire(1));

得到如下類似的結(jié)果:

Java高并發(fā)系統(tǒng)限流的方法是什么

等了兩秒鐘之后,令牌桶里面就積累了 3 個令牌,可以連續(xù)不花時間的獲取出來。處理突發(fā)其實(shí)也就是在單位時間內(nèi)輸出恒定。

這兩種方式都是使用的 RateLimiter 的子類 SmoothBursty。另一個子類是  SmoothWarmingUp,它提供的有一定緩沖的流量輸出方案。

/** * 創(chuàng)建一個限流器,設(shè)置每秒放置的令牌數(shù):2個。速率是每秒可以210的消息。 * 返回的RateLimiter對象可以保證1秒內(nèi)不會給超過2個令牌,并且是固定速率的放置。達(dá)到平滑輸出的效果 * 設(shè)置緩沖時間為3秒 */ RateLimiter r = RateLimiter.create(2,3,TimeUnit.SECONDS);  while (true) {     /**      * acquire()獲取一個令牌,并且返回這個獲取這個令牌所需要的時間。如果桶里沒有令牌則等待,直到有令牌。      * acquire(N)可以獲取多個令牌。      */     System.out.println(r.acquire(1));     System.out.println(r.acquire(1));     System.out.println(r.acquire(1));     System.out.println(r.acquire(1)); }

輸出結(jié)果如下圖,由于設(shè)置了緩沖的時間是 3 秒,令牌桶一開始并不會 0.5 秒給一個消息,而是形成一個平滑線性下降的坡度,頻率越來越高,在 3  秒鐘之內(nèi)達(dá)到原本設(shè)置的頻率,以后就以固定的頻率輸出。

Java高并發(fā)系統(tǒng)限流的方法是什么

圖中紅線圈出來的 3 次累加起來正好是 3 秒左右。這種功能適合系統(tǒng)剛啟動需要一點(diǎn)時間來“熱身”的場景。

Nginx

對于 Nginx 接入層限流可以使用 Nginx 自帶的兩個模塊:

  • 連接數(shù)限流模塊:ngx_http_limit_conn_module

  • 漏桶算法實(shí)現(xiàn)的請求限流模塊:ngx_http_limit_req_module

①ngx_http_limit_conn_module

我們經(jīng)常會遇到這種情況,服務(wù)器流量異常,負(fù)載過大等等。對于大流量惡意的攻擊訪問,會帶來帶寬的浪費(fèi),服務(wù)器壓力,影響業(yè)務(wù),往往考慮對同一個 IP  的連接數(shù),并發(fā)數(shù)進(jìn)行限制。

ngx_http_limit_conn_module 模塊來實(shí)現(xiàn)該需求。該模塊可以根據(jù)定義的鍵來限制每個鍵值的連接數(shù),如同一個 IP  來源的連接數(shù)。

并不是所有的連接都會被該模塊計數(shù),只有那些正在被處理的請求(這些請求的頭信息已被完全讀入)所在的連接才會被計數(shù)。

我們可以在 nginx_conf 的 http{} 中加上如下配置實(shí)現(xiàn)限制:

#限制每個用戶的并發(fā)連接數(shù),取名one limit_conn_zone $binary_remote_addr zone=one:10m;  #配置記錄被限流后的日志級別,默認(rèn)error級別 limit_conn_log_level error; #配置被限流后返回的狀態(tài)碼,默認(rèn)返回503 limit_conn_status 503;

然后在 server{} 里加上如下代碼:

#限制用戶并發(fā)連接數(shù)為1 limit_conn one 1;

然后我們是使用 ab 測試來模擬并發(fā)請求:

ab -n 5 -c 5 http://10.23.22.239/index.html

得到下面的結(jié)果,很明顯并發(fā)被限制住了,超過閾值的都顯示 503:

Java高并發(fā)系統(tǒng)限流的方法是什么

另外剛才是配置針對單個 IP 的并發(fā)限制,還是可以針對域名進(jìn)行并發(fā)限制,配置和客戶端 IP 類似。

#http{}段配置 limit_conn_zone $ server_name zone=perserver:10m; #server{}段配置 limit_conn perserver 1;

②ngx_http_limit_req_module

上面我們使用到了 ngx_http_limit_conn_module 模塊,來限制連接數(shù)。那么請求數(shù)的限制該怎么做呢?

這就需要通過 ngx_http_limit_req_module 模塊來實(shí)現(xiàn),該模塊可以通過定義的鍵值來限制請求處理的頻率。

特別的,可以限制來自單個 IP 地址的請求處理頻率。限制的方法是使用了漏斗算法,每秒固定處理請求數(shù),推遲過多請求。

如果請求的頻率超過了限制域配置的值,請求處理會被延遲或被丟棄,所以所有的請求都是以定義的頻率被處理的。

在 http{} 中配置,#區(qū)域名稱為 one,大小為 10m,平均處理的請求頻率不能超過每秒一次。

limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;

在 server{} 中配置:

設(shè)置每個IP桶的數(shù)量為5 limit_req zone=one burst=5;

上面設(shè)置定義了每個 IP 的請求處理只能限制在每秒 1 個。并且服務(wù)端可以為每個 IP 緩存 5 個請求,如果操作了 5 個請求,請求就會被丟棄。

使用 ab 測試模擬客戶端連續(xù)訪問 10 次:

ab -n 10 -c 10 http://10.23.22.239/index.html

如下圖,設(shè)置了桶的個數(shù)為 5 個。一共 10 個請求,第一個請求馬上被處理。第 2-6 個被存放在桶中。

由于桶滿了,沒有設(shè)置 nodelay 因此,余下的 4 個請求被丟棄:

Java高并發(fā)系統(tǒng)限流的方法是什么

到此,相信大家對“Java高并發(fā)系統(tǒng)限流的方法是什么”有了更深的了解,不妨來實(shí)際操作一番吧!這里是億速云網(wǎng)站,更多相關(guān)內(nèi)容可以進(jìn)入相關(guān)頻道進(jìn)行查詢,關(guān)注我們,繼續(xù)學(xué)習(xí)!

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報,并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI