溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

好用的Python技巧有哪些

發(fā)布時間:2021-11-19 13:44:09 來源:億速云 閱讀:134 作者:iii 欄目:編程語言

這篇文章主要講解了“好用的Python技巧有哪些”,文中的講解內(nèi)容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“好用的Python技巧有哪些”吧!

1、對輸入的字符串“消毒”

對用戶輸入的內(nèi)容“消毒”,這問題幾乎適用于你編寫的所有程序。通常將字符轉(zhuǎn)換為小寫或大寫就足夠了,有時你還可以使用正則表達式來完成工作,但是對于復雜的情況,還有更好的方法:

user_input = "This\nstring has\tsome whitespaces...\r\n"  character_map = {  ord('\n') : ' ',  ord('\t') : ' ',  ord('\r') : None } user_input.translate(character_map)  # This string has some whitespaces... "

在此示例中,你可以看到空格字符“ \n”和“ \t”被單個空格替換了,而“  \r”則被完全刪除。這是一個簡單的示例,但是我們可以更進一步,使用unicodedata 庫及其 combining()  函數(shù),來生成更大的重映射表(remapping table),并用它來刪除字符串中所有的重音。

2、對迭代器切片

如果你嘗試直接對迭代器切片,則會得到 TypeError ,提示說該對象不可取下標(not  subscriptable),但是有一個簡單的解決方案:

import itertools  s = itertools.islice(range(50), 10, 20)  # <itertools.islice object at 0x7f70fab88138> for val in s:  ...

使用itertools.islice,我們可以創(chuàng)建一個 islice  對象,該對象是一個迭代器,可以生成我們所需的內(nèi)容。但是這有個重要的提醒,即它會消耗掉切片前以及切片對象 islice 中的所有元素。

(譯注:更多關于迭代器切片的內(nèi)容,可閱讀Python進階:迭代器與迭代器切片)

3、跳過可迭代對象的開始

有時候你必須處理某些文件,它們以可變數(shù)量的不需要的行(例如注釋)為開頭。itertools 再次提供了簡單的解決方案:

string_from_file = """ // Author: ... // License: ... // // Date: ...  Actual content... """  import itertools  for line in itertools.dropwhile(lambda line:line.startswith("//"), string_from_file.split("\n")):     print(line)

這段代碼僅會打印在初始的注釋部分之后的內(nèi)容。如果我們只想丟棄迭代器的開頭部分(在此例中是注釋),并且不知道有多少內(nèi)容,那么此方法很有用。

4、僅支持關鍵字參數(shù)(kwargs)的函數(shù)

當需要函數(shù)提供(強制)更清晰的參數(shù)時,創(chuàng)建僅支持關鍵字參數(shù)的函數(shù),可能會挺有用:

def test(*, a, b):  pass  test("value for a", "value for b")  # TypeError: test() takes 0 positional arguments... test(a="value", b="value 2")  # Works...

如你所見,可以在關鍵字參數(shù)之前,放置單個 * 參數(shù)來輕松解決此問題。如果我們將位置參數(shù)放在 * 參數(shù)之前,則顯然也可以有位置參數(shù)。

5、創(chuàng)建支持 with 語句的對象

我們都知道如何使用 with  語句,例如打開文件或者是獲取鎖,但是我們可以實現(xiàn)自己的么?是的,我們可以使用__enter__ 和__exit__ 方法來實現(xiàn)上下文管理器協(xié)議:

class Connection:  def __init__(self):   ...   def __enter__(self):   # Initialize connection...   def __exit__(self, type, value, traceback):   # Close connection...  with Connection() as c:  # __enter__() executes  ...  # conn.__exit__() executes

這是在 Python 中實現(xiàn)上下文管理的最常見方法,但是還有一種更簡單的方法:

from contextlib import contextmanager  @contextmanager def tag(name):  print(f"<{name}>")  yield  print(f"</{name}>")  with tag("h2"):  print("This is Title.")

上面的代碼段使用 contextmanager 裝飾器實現(xiàn)了內(nèi)容管理協(xié)議。tag 函數(shù)的第一部分(yield 之前)會在進入 with  語句時執(zhí)行,然后執(zhí)行 with 的代碼塊,最后會執(zhí)行 tag 函數(shù)的剩余部分。

6、用__slots__節(jié)省內(nèi)存

如果你曾經(jīng)編寫過一個程序,該程序創(chuàng)建了某個類的大量實例,那么你可能已經(jīng)注意到你的程序突然就需要大量內(nèi)存。那是因為  Python 使用字典來表示類實例的屬性,這能使其速度變快,但內(nèi)存不是很高效。通常這不是個問題,但是,如果你的程序遇到了問題,你可以嘗試使用__slots__  :

class Person:     __slots__ = ["first_name", "last_name", "phone"]     def __init__(self, first_name, last_name, phone):     self.first_name = first_name     self.last_name = last_name     self.phone = phone

這里發(fā)生的是,當我們定義__slots__屬性時,Python  使用固定大小的小型數(shù)組,而不是字典,這大大減少了每個實例所需的內(nèi)存。使用__slots__還有一些缺點&mdash;&mdash;我們無法聲明任何新的屬性,并且只能使用在__slots__中的屬性。同樣,帶有__slots__的類不能使用多重繼承。

7、限制CPU和內(nèi)存使用量

如果不是想優(yōu)化程序內(nèi)存或 CPU 使用率,而是想直接將其限制為某個固定數(shù)字,那么 Python 也有一個庫能做到:

import signal import resource import os  # To Limit CPU time def time_exceeded(signo, frame):  print("CPU exceeded...")  raise SystemExit(1)  def set_max_runtime(seconds):  # Install the signal handler and set a resource limit  soft, hard = resource.getrlimit(resource.RLIMIT_CPU)  resource.setrlimit(resource.RLIMIT_CPU, (seconds, hard))  signal.signal(signal.SIGXCPU, time_exceeded)  # To limit memory usage def set_max_memory(size):  soft, hard = resource.getrlimit(resource.RLIMIT_AS)  resource.setrlimit(resource.RLIMIT_AS, (size, hard))

在這里,我們可以看到兩個選項,可設置最大 CPU 運行時間和內(nèi)存使用上限。對于 CPU  限制,我們首先獲取該特定資源(RLIMIT_CPU)的軟限制和硬限制,然后通過參數(shù)指定的秒數(shù)和先前獲取的硬限制來設置它。最后,如果超過 CPU  時間,我們將注冊令系統(tǒng)退出的信號。至于內(nèi)存,我們再次獲取軟限制和硬限制,并使用帶有 size 參數(shù)的setrlimit 和獲取的硬限制對其進行設置。

8、控制可以import的內(nèi)容

某些語言具有非常明顯的用于導出成員(變量、方法、接口)的機制,例如Golang,它僅導出以大寫字母開頭的成員。另一方面,在  Python 中,所有內(nèi)容都會被導出,除非我們使用__all__ :

def foo():  pass  def bar():  pass  __all__ = ["bar"]

使用上面的代碼段,我們可以限制from some_module import * 在使用時可以導入的內(nèi)容。對于以上示例,通配導入時只會導入  bar。此外,我們可以將__all__ 設為空,令其無法導出任何東西,并且在使用通配符方式從此模塊中導入時,將引發(fā) AttributeError。

9、比較運算符的簡便方法

為一個類實現(xiàn)所有比較運算符可能會很煩人,因為有很多的比較運算符&mdash;&mdash;__lt__、__le__、__gt__  或__ge__。但是,如果有更簡單的方法呢?functools.total_ordering 可救場:

from functools import total_ordering  @total_ordering class Number:  def __init__(self, value):   self.value = value   def __lt__(self, other):   return self.value < other.value   def __eq__(self, other):   return self.value == other.value  print(Number(20) > Number(3)) print(Number(1) < Number(5)) print(Number(15) >= Number(15)) print(Number(10) <= Number(2))

這到底如何起作用的?total_ordering 裝飾器用于簡化為我們的類實例實現(xiàn)排序的過程。只需要定義__lt__  和__eq__,這是最低的要求,裝飾器將映射剩余的操作&mdash;&mdash;它為我們填補了空白。

10、使用slice函數(shù)命名切片

使用大量硬編碼的索引值會很快搞亂維護性和可讀性。一種做法是對所有索引值使用常量,但是我們可以做得更好:

# ID   First Name   Last Name line_record = "2        John         Smith"  ID = slice(0, 8) FIRST_NAME = slice(9, 21) LAST_NAME = slice(22, 27)  name = f"{line_record[FIRST_NAME].strip()} {line_record[LAST_NAME].strip()}" # name == "John Smith"

在此例中,我們可以避免神秘的索引,方法是先使用 slice 函數(shù)命名它們,然后再使用它們。你還可以通過 .start、.stop和 .stop  屬性,來了解 slice 對象的更多信息。

11、在運行時提示用戶輸入密碼

許多命令行工具或腳本需要用戶名和密碼才能操作。因此,如果你碰巧寫了這樣的程序,你可能會發(fā)現(xiàn) getpass  模塊很有用:

import getpass  user = getpass.getuser() password = getpass.getpass() # Do Stuff...

這個非常簡單的包通過提取當前用戶的登錄名,可以提示用戶輸入密碼。但是須注意,并非每個系統(tǒng)都支持隱藏密碼。Python  會嘗試警告你,因此切記在命令行中閱讀警告信息。

12、查找單詞/字符串的相近匹配

現(xiàn)在,關于 Python 標準庫中一些晦澀難懂的特性。如果你發(fā)現(xiàn)自己需要使用Levenshtein distance  【2】之類的東西,來查找某些輸入字符串的相似單詞,那么 Python 的 difflib 會為你提供支持。

import difflib difflib.get_close_matches('appel', ['ape', 'apple', 'peach', 'puppy'], n=2) # returns ['apple', 'ape']

difflib.get_close_matches 會查找最佳的“足夠好”的匹配。在這里,第一個參數(shù)與第二個參數(shù)匹配。我們還可以提供可選參數(shù) n  ,該參數(shù)指定要返回的最多匹配結果。另一個可選的關鍵字參數(shù) cutoff (默認值為 0.6),可以設置字符串匹配得分的閾值。

13、使用IP地址

如果你必須使用 Python 做網(wǎng)絡開發(fā),你可能會發(fā)現(xiàn) ipaddress 模塊非常有用。一種場景是從 CIDR(無類別域間路由  Classless Inter-Domain Routing)生成一系列 IP 地址:

import ipaddress net = ipaddress.ip_network('74.125.227.0/29')  # Works for IPv6 too # IPv4Network('74.125.227.0/29')  for addr in net:     print(addr)  # 74.125.227.0 # 74.125.227.1 # 74.125.227.2 # 74.125.227.3 # ...

另一個不錯的功能是檢查 IP 地址的網(wǎng)絡成員資格:

ip = ipaddress.ip_address("74.125.227.3")  ip in net # True  ip = ipaddress.ip_address("74.125.227.12") ip in net # False

還有很多有趣的功能,在這里【3】可以找到,我不再贅述。但是請注意,ipaddress 模塊和其它與網(wǎng)絡相關的模塊之間只有有限的互通性。例如,你不能將  IPv4Network 實例當成地址字符串&mdash;&mdash;需要先使用 str 轉(zhuǎn)換它們。

14、在Shell中調(diào)試程序崩潰

如果你是一個拒絕使用 IDE,并在 Vim 或 Emacs 中進行編碼的人,那么你可能會遇到這樣的情況:擁有在 IDE  中那樣的調(diào)試器會很有用。

你知道嗎?你有一個&mdash;&mdash;只要用python3.8 -i 運行你的程序&mdash;&mdash;一旦你的程序終止了, -i 會啟動交互式  shell,在那你可以查看所有的變量和調(diào)用函數(shù)。整潔,但是使用實際的調(diào)試器(pdb )會如何呢?讓我們用以下程序(script.py ):

def func():     return 0 / 0  func()

并使用python3.8 -i script.py運行腳本:

# Script crashes... Traceback (most recent call last):   File "script.py", line 4, in <module>     func()   File "script.py", line 2, in func     return 0 / 0 ZeroDivisionError: division by zero >>> import pdb >>> pdb.pm()  # Post-mortem debugger > script.py(2)func() -> return 0 / 0 (Pdb)

我們看到了崩潰的地方,現(xiàn)在讓我們設置一個斷點:

def func():     breakpoint()  # import pdb; pdb.set_trace()     return 0 / 0  func()

現(xiàn)在再次運行它:

script.py(3)func() -> return 0 / 0 (Pdb)  # we start here (Pdb) step ZeroDivisionError: division by zero > script.py(3)func() -> return 0 / 0 (Pdb)

大多數(shù)時候,打印語句和錯誤信息就足以進行調(diào)試,但是有時候,你需要四處摸索,以了解程序內(nèi)部正在發(fā)生的事情。在這些情況下,你可以設置斷點,然后程序執(zhí)行時將在斷點處停下,你可以檢查程序,例如列出函數(shù)參數(shù)、表達式求值、列出變量、或如上所示僅作單步執(zhí)行。

pdb 是功能齊全的 Python shell,理論上你可以執(zhí)行任何東西,但是你還需要一些調(diào)試命令,可在此處【4】找到。

15、在一個類中定義多個構造函數(shù)

函數(shù)重載是編程語言(不含  Python)中非常常見的功能。即使你不能重載正常的函數(shù),你仍然可以使用類方法重載構造函數(shù):

import datetime  class Date:     def __init__(self, year, month, day):         self.year = year         self.month = month         self.day = day      @classmethod     def today(cls):         t = datetime.datetime.now()         return cls(t.year, t.month, t.day)  d = Date.today() print(f"{d.day}/{d.month}/{d.year}") # 14/9/2019

你可能傾向于將替代構造函數(shù)的所有邏輯放入__init__,并使用*args 、**kwargs 和一堆 if  語句,而不是使用類方法來解決。那可能行得通,但是卻變得難以閱讀和維護。

因此,我建議將很少的邏輯放入__init__,并在單獨的方法/構造函數(shù)中執(zhí)行所有操作。這樣,對于類的維護者和用戶而言,得到的都是干凈的代碼。

16、使用裝飾器緩存函數(shù)調(diào)用

你是否曾經(jīng)編寫過一種函數(shù),它執(zhí)行昂貴的 I/O  操作或一些相當慢的遞歸,而且該函數(shù)可能會受益于對其結果進行緩存(存儲)?如果你有,那么有簡單的解決方案,即使用 functools 的lru_cache  :

from functools import lru_cache import requests  @lru_cache(maxsize=32) def get_with_cache(url):     try:         r = requests.get(url)         return r.text     except:         return "Not Found"   for url in ["https://google.com/",             "https://martinheinz.dev/",             "https://reddit.com/",             "https://google.com/",             "https://dev.to/martinheinz",             "https://google.com/"]:     get_with_cache(url)  print(get_with_cache.cache_info()) # CacheInfo(hits=2, misses=4, maxsize=32, currsize=4)

在此例中,我們用了可緩存的 GET 請求(最多 32 個緩存結果)。你還可以看到,我們可以使用 cache_info  方法檢查函數(shù)的緩存信息。裝飾器還提供了 clear_cache 方法,用于使緩存結果無效。

我還想指出,此函數(shù)不應與具有副作用的函數(shù)一起使用,或與每次調(diào)用都創(chuàng)建可變對象的函數(shù)一起使用。

17、在可迭代對象中查找最頻繁出現(xiàn)的元素

在列表中查找最常見的元素是非常常見的任務,你可以使用 for 循環(huán)和字典(map),但是這沒必要,因為  collections 模塊中有 Counter 類:

from collections import Counter  cheese = ["gouda", "brie", "feta", "cream cheese", "feta", "cheddar",           "parmesan", "parmesan", "cheddar", "mozzarella", "cheddar", "gouda",           "parmesan", "camembert", "emmental", "camembert", "parmesan"]  cheese_count = Counter(cheese) print(cheese_count.most_common(3)) # Prints: [('parmesan', 4), ('cheddar', 3), ('gouda', 2)]

實際上,Counter 只是一個字典,將元素與出現(xiàn)次數(shù)映射起來,因此你可以將其用作普通字典:

python print(cheese_count["mozzarella"]) &uml;K40K cheese_count["mozzarella"] +=  1 print(cheese_count["mozzarella"]) &uml;K41K

除此之外,你還可以使用 update(more_words) 方法輕松添加更多元素。Counter  的另一個很酷的特性是你可以使用數(shù)學運算(加法和減法)來組合和減去 Counter 的實例。

感謝各位的閱讀,以上就是“好用的Python技巧有哪些”的內(nèi)容了,經(jīng)過本文的學習后,相信大家對好用的Python技巧有哪些這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是億速云,小編將為大家推送更多相關知識點的文章,歡迎關注!

向AI問一下細節(jié)

免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權內(nèi)容。

AI