溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

怎么在R語言中實現(xiàn)線性回歸

發(fā)布時間:2021-05-25 16:12:52 來源:億速云 閱讀:548 作者:Leah 欄目:開發(fā)技術(shù)

本篇文章為大家展示了怎么在R語言中實現(xiàn)線性回歸,內(nèi)容簡明扼要并且容易理解,絕對能使你眼前一亮,通過這篇文章的詳細介紹希望你能有所收獲。

在統(tǒng)計學(xué)中,線性回歸(Linear Regression)是利用稱為線性回歸方程的最小平方函數(shù)對一個或多個自變量和因變量之間關(guān)系進行建模的一種回歸分析。

簡單對來說就是用來確定兩種或兩種以上變量間相互依賴的定量關(guān)系的一種統(tǒng)計分析方法。

回歸分析中,只包括一個自變量和一個因變量,且二者的關(guān)系可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。如果回歸分析中包括兩個或兩個以上的自變量,且因變量和自變量之間是線性關(guān)系,則稱為多元線性回歸分析。

一元線性回歸分析法的數(shù)學(xué)方程:

y = ax + b
  • y 是因變量的值。

  • x 是自變量的值。

  • a 與 b 為一元線性回歸方程的參數(shù)。

接下來我們可以創(chuàng)建一個人體身高與體重的預(yù)測模型:

1、收集樣本數(shù)據(jù):身高與體重。
2、使用 lm() 函數(shù)來創(chuàng)建一個關(guān)系模型。
3、從創(chuàng)建的模型中找到系數(shù),并創(chuàng)建數(shù)學(xué)方程式。
4、獲取關(guān)系模型的概要,了解平均誤差即殘差(估計值與真實值之差)。
5、使用 predict() 函數(shù)來預(yù)測人的體重。

準(zhǔn)備數(shù)據(jù)

以下是人的身高與體重數(shù)據(jù):

# 身高,單位 cm
151, 174, 138, 186, 128, 136, 179, 163, 152, 131

# 體重,單位 kg
63, 81, 56, 91, 47, 57, 76, 72, 62, 48

lm() 函數(shù)

在 R 中,你可以通過函數(shù) lm() 進行線性回歸。

lm() 函數(shù)用于創(chuàng)建自變量與因變量之間的關(guān)系模型。

lm() 函數(shù)語法格式如下:

lm(formula,data)

參數(shù)說明:

  • formula - 一個符號公式,表示 x 和 y 之間的關(guān)系。

  • data - 應(yīng)用數(shù)據(jù)。

創(chuàng)建關(guān)系模型,并獲取系數(shù):

# 樣本數(shù)據(jù)
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

# 提交給 lm() 函數(shù)
relation <- lm(y~x)

print(relation)

執(zhí)行以上代碼輸出結(jié)果為:

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept)      x 
  -38.4551    0.6746

使用 summary() 函數(shù)獲取關(guān)系模型的概要:

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

# 提交給 lm() 函數(shù)
relation <- lm(y~x)

print(summary(relation))

執(zhí)行以上代碼輸出結(jié)果為:

Call:
lm(formula = y ~ x)

Residuals:
  Min   1Q   Median   3Q   Max 
-6.3002  -1.6629 0.0412  1.8944 3.9775 

Coefficients:
       Estimate Std. Error t value Pr(>|t|)  
(Intercept) -38.45509  8.04901 -4.778 0.00139 ** 
x       0.67461  0.05191 12.997 1.16e-06 ***
---
Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1

Residual standard error: 3.253 on 8 degrees of freedom
Multiple R-squared: 0.9548,  Adjusted R-squared: 0.9491 
F-statistic: 168.9 on 1 and 8 DF, p-value: 1.164e-06

predict() 函數(shù)

predict() 函數(shù)用于根據(jù)我們建立的模型來預(yù)測數(shù)值。

predict() 函數(shù)語法格式如下:

predict(object, newdata)

參數(shù)說明:

  • object - lm() 函數(shù)創(chuàng)建的公式。

  • newdata - 要預(yù)測的值。

以下實例我們預(yù)測一個新的體重值:

# 樣本數(shù)據(jù)
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

# 提交給 lm() 函數(shù)
relation <- lm(y~x)

# 判斷身高為 170cm 的體重
a <- data.frame(x = 170)
result <-  predict(relation,a)
print(result)

執(zhí)行以上代碼輸出結(jié)果為:

1 
76.22869

我們也可以生存一個圖表:

# 樣本數(shù)據(jù)
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)
relation <- lm(y~x)

# 生存 png 圖片
png(file = "linearregression.png")

# 生成圖表
plot(y,x,col = "blue",main = "Height & Weight Regression",
abline(lm(x~y)),cex = 1.3,pch = 16,xlab = "Weight in Kg",ylab = "Height in cm")

圖表如下:

怎么在R語言中實現(xiàn)線性回歸

什么是R語言

R語言是用于統(tǒng)計分析、繪圖的語言和操作環(huán)境,屬于GNU系統(tǒng)的一個自由、免費、源代碼開放的軟件,它是一個用于統(tǒng)計計算和統(tǒng)計制圖的優(yōu)秀工具。

上述內(nèi)容就是怎么在R語言中實現(xiàn)線性回歸,你們學(xué)到知識或技能了嗎?如果還想學(xué)到更多技能或者豐富自己的知識儲備,歡迎關(guān)注億速云行業(yè)資訊頻道。

向AI問一下細節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI