溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點(diǎn)擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

怎么搭建resnet18網(wǎng)絡(luò)并加載torchvision自帶權(quán)重

發(fā)布時(shí)間:2021-05-14 09:22:40 來源:億速云 閱讀:627 作者:小新 欄目:開發(fā)技術(shù)

這篇文章給大家分享的是有關(guān)怎么搭建resnet18網(wǎng)絡(luò)并加載torchvision自帶權(quán)重的內(nèi)容。小編覺得挺實(shí)用的,因此分享給大家做個(gè)參考,一起跟隨小編過來看看吧。

直接搭建網(wǎng)絡(luò)必須與torchvision自帶的網(wǎng)絡(luò)的權(quán)重也就是pth文件的結(jié)構(gòu)、尺寸和變量命名完全一致,否則無法加載權(quán)重文件。

pytorch加載預(yù)訓(xùn)練模型與自己模型不匹配的解決方案

import torch
import torchvision
import cv2 as cv
from utils.utils import letter_box
from model.backbone import ResNet18

model1 = ResNet18(1)
model2 = torchvision.models.resnet18(progress=False)
fc = model2.fc
model2.fc = torch.nn.Linear(512, 1)
# print(model)
model_dict1 = model1.state_dict()
model_dict2 = torch.load('resnet18.pth')
model_list1 = list(model_dict1.keys())
model_list2 = list(model_dict2.keys())
len1 = len(model_list1)
len2 = len(model_list2)
minlen = min(len1, len2)
for n in range(minlen):
    if model_dict1[model_list1[n]].shape != model_dict2[model_list2[n]].shape:
        continue
    model_dict1[model_list1[n]] = model_dict2[model_list2[n]]
model1.load_state_dict(model_dict1)
missing, unspected = model2.load_state_dict(model_dict2)
image = cv.imread('zhn1.jpg')
image = letter_box(image, 224)
image = image[:, :, ::-1].transpose(2, 0, 1)
print('Network loading complete.')
model1.eval()
model2.eval()
with torch.no_grad():
    image = torch.tensor(image/256, dtype=torch.float32).unsqueeze(0)
    predict1 = model1(image)
    predict2 = model2(image)
print('finished')
# torch.save(model.state_dict(), 'resnet18.pth')

以上為全部程序,最終可測試原模型與加載了自帶權(quán)重的自定義模型的輸出是否相等。

補(bǔ)充:使用Pytorch搭建ResNet分類網(wǎng)絡(luò)并基于遷移學(xué)習(xí)訓(xùn)練

如果stride=1,padding=1

卷積處理是不會改變特征矩陣的高和寬

使用BN層時(shí)

卷積中的參數(shù)bias置為False(有無偏置BN層的輸出都相同),BN層放在conv層和relu層的中間

復(fù)習(xí)BN層:

Batch Norm 層是對每層數(shù)據(jù)歸一化后再進(jìn)行線性變換改善數(shù)據(jù)分布, 其中的線性變換是可學(xué)習(xí)的.

Batch Norm優(yōu)點(diǎn):減輕過擬合;改善梯度傳播(權(quán)重不會過高或過低)容許較高的學(xué)習(xí)率,能夠提高訓(xùn)練速度。減輕對初始化權(quán)重的強(qiáng)依賴,使得數(shù)據(jù)分布在激活函數(shù)的非飽和區(qū)域,一定程度上解決梯度消失問題。作為一種正則化的方式,在某種程度上減少對dropout的使用。

Batch Norm層擺放位置:在激活層(如 ReLU )之前還是之后,沒有一個(gè)統(tǒng)一的定論。

BN層與 Dropout 合作:Batch Norm的提出使得dropout的使用減少,但是Batch Norm不能完全取代dropout,保留較小的dropout率,如0.2可能效果更佳。

為什么要先normalize再通過γ,β線性變換恢復(fù)接近原來的樣子,這不是多此一舉嗎?

在一定條件下可以糾正原始數(shù)據(jù)的分布(方差,均值變?yōu)樾轮郸?β),當(dāng)原始數(shù)據(jù)分布足夠好時(shí)就是恒等映射,不改變分布。如果不做BN,方差和均值對前面網(wǎng)絡(luò)的參數(shù)有復(fù)雜的關(guān)聯(lián)依賴,具有復(fù)雜的非線性。在新參數(shù) γH′ + β 中僅由 γ,β 確定,與前邊網(wǎng)絡(luò)的參數(shù)無關(guān),因此新參數(shù)很容易通過梯度下降來學(xué)習(xí),能夠?qū)W習(xí)到較好的分布。

遷移學(xué)習(xí)導(dǎo)入權(quán)重和下載權(quán)重:

import torchvision.models.resnet#ctrl+鼠標(biāo)左鍵點(diǎn)擊即可下載權(quán)重
net = resnet34()#一開始不能設(shè)置全連接層的輸出種類為自己想要的,必須先將模型參數(shù)載入,再修改全連接層
# 官方提供載入預(yù)訓(xùn)練模型的方法
model_weight_path = "./resnet34-pre.pth"#權(quán)重路徑
missing_keys, unexpected_keys = net.load_state_dict(torch.load(model_weight_path), strict=False)#載入模型權(quán)重
inchannel = net.fc.in_features
net.fc = nn.Linear(inchannel, 5)#重新確定全連接層

完整代碼:

model部分:

import torch.nn as nn
import torch
class BasicBlock(nn.Module):#對應(yīng)18層和34層所對應(yīng)的殘差結(jié)構(gòu)(既要有實(shí)線殘差結(jié)構(gòu)功能,也要有虛線殘差結(jié)構(gòu)功能)
    expansion = 1#殘差結(jié)構(gòu)主分支上的三個(gè)卷積層是否相同,相同為1,第三層是一二層四倍則為4
    def __init__(self, in_channel, out_channel, stride=1, downsample=None):#downsample代表虛線殘差結(jié)構(gòu)選項(xiàng)
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                               kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.downsample = downsample
    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)#得到捷徑分支的輸出
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        out += identity
        out = self.relu(out)
        return out#得到殘差結(jié)構(gòu)的最終輸出

class Bottleneck(nn.Module):#對應(yīng)50層、101層和152層所對應(yīng)的殘差結(jié)構(gòu)
    expansion = 4#第三層卷積核個(gè)數(shù)是第一層和第二層的四倍
    def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=1, stride=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                               kernel_size=3, stride=stride, bias=False, padding=1)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel*self.expansion,
                               kernel_size=1, stride=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
        out = self.conv3(out)
        out = self.bn3(out)
        out += identity
        out = self.relu(out)
        return out

class ResNet(nn.Module):#定義整個(gè)網(wǎng)絡(luò)的框架部分
#blocks_num是殘差結(jié)構(gòu)的數(shù)目,是一個(gè)列表參數(shù),block對應(yīng)哪個(gè)殘差模塊
    def __init__(self, block, blocks_num, num_classes=1000, include_top=True):
        super(ResNet, self).__init__()
        self.include_top = include_top
        self.in_channel = 64#通過第一個(gè)池化層后所得到的特征矩陣的深度
        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
                               padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, blocks_num[0])
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)
        if self.include_top:
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # output size = (1, 1)
            self.fc = nn.Linear(512 * block.expansion, num_classes)
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
    def _make_layer(self, block, channel, block_num, stride=1):#channel:殘差結(jié)構(gòu)中,第一個(gè)卷積層所使用的卷積核的個(gè)數(shù)
        downsample = None
        if stride != 1 or self.in_channel != channel * block.expansion:#18層和34層會直接跳過這個(gè)if語句
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion))
        layers = []
        layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride))
        self.in_channel = channel * block.expansion
        for _ in range(1, block_num):
            layers.append(block(self.in_channel, channel))
        return nn.Sequential(*layers)
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        if self.include_top:#默認(rèn)是true
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)
        return x

def resnet34(num_classes=1000, include_top=True):
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)

def resnet101(num_classes=1000, include_top=True):
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)

訓(xùn)練部分:

import torch
import torch.nn as nn
from torchvision import transforms, datasets
import json
import matplotlib.pyplot as plt
import os
import torch.optim as optim
from model import resnet34, resnet101
import torchvision.models.resnet#ctrl+鼠標(biāo)左鍵點(diǎn)擊即可下載權(quán)重
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
data_transform = {
    "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                 transforms.RandomHorizontalFlip(),
                                 transforms.ToTensor(),
                                 transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),#和官網(wǎng)初始化方法保持一致
    "val": transforms.Compose([transforms.Resize(256),
                               transforms.CenterCrop(224),
                               transforms.ToTensor(),
                               transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}

data_root = os.path.abspath(os.path.join(os.getcwd(), "../.."))  # get data root path
image_path = data_root + "/data_set/flower_data/"  # flower data set path
train_dataset = datasets.ImageFolder(root=image_path+"train",
                                     transform=data_transform["train"])
train_num = len(train_dataset)
# {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
flower_list = train_dataset.class_to_idx
cla_dict = dict((val, key) for key, val in flower_list.items())
# write dict into json file
json_str = json.dumps(cla_dict, indent=4)
with open('class_indices.json', 'w') as json_file:
    json_file.write(json_str)
batch_size = 16
train_loader = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size, shuffle=True,
                                           num_workers=0)
validate_dataset = datasets.ImageFolder(root=image_path + "val",
                                        transform=data_transform["val"])
val_num = len(validate_dataset)
validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                              batch_size=batch_size, shuffle=False,
                                              num_workers=0)
net = resnet34()#一開始不能設(shè)置全連接層的輸出種類為自己想要的,必須先將模型參數(shù)載入,再修改全連接層
# 官方提供載入預(yù)訓(xùn)練模型的方法
model_weight_path = "./resnet34-pre.pth"#權(quán)重路徑
missing_keys, unexpected_keys = net.load_state_dict(torch.load(model_weight_path), strict=False)#載入模型權(quán)重
inchannel = net.fc.in_features
net.fc = nn.Linear(inchannel, 5)#重新確定全連接層
net.to(device)
loss_function = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.0001)
best_acc = 0.0
save_path = './resNet34.pth'
for epoch in range(3):
    # train
    net.train()#控制BN層狀態(tài)
    running_loss = 0.0
    for step, data in enumerate(train_loader, start=0):
        images, labels = data
        optimizer.zero_grad()
        logits = net(images.to(device))
        loss = loss_function(logits, labels.to(device))
        loss.backward()
        optimizer.step()
        # print statistics
        running_loss += loss.item()
        # print train process
        rate = (step+1)/len(train_loader)
        a = "*" * int(rate * 50)
        b = "." * int((1 - rate) * 50)
        print("\rtrain loss: {:^3.0f}%[{}->{}]{:.4f}".format(int(rate*100), a, b, loss), end="")
    print()
    # validate
    net.eval()#控制BN層狀態(tài)
    acc = 0.0  # accumulate accurate number / epoch
    with torch.no_grad():
        for val_data in validate_loader:
            val_images, val_labels = val_data
            outputs = net(val_images.to(device))  # eval model only have last output layer
            # loss = loss_function(outputs, test_labels)
            predict_y = torch.max(outputs, dim=1)[1]
            acc += (predict_y == val_labels.to(device)).sum().item()
        val_accurate = acc / val_num
        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net.state_dict(), save_path)
        print('[epoch %d] train_loss: %.3f  test_accuracy: %.3f' %
              (epoch + 1, running_loss / step, val_accurate))
print('Finished Training')

預(yù)測部分:

import torch
from model import resnet34
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
import json
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
data_transform = transforms.Compose(
    [transforms.Resize(256),
     transforms.CenterCrop(224),
     transforms.ToTensor(),
     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])#采用和訓(xùn)練方法一樣的標(biāo)準(zhǔn)化處理
# load image
img = Image.open("../aa.jpg")
plt.imshow(img)
# [N, C, H, W]
img = data_transform(img)
# expand batch dimension
img = torch.unsqueeze(img, dim=0)
# read class_indict
try:
    json_file = open('./class_indices.json', 'r')
    class_indict = json.load(json_file)
except Exception as e:
    print(e)
    exit(-1)
# create model
model = resnet34(num_classes=5)
# load model weights
model_weight_path = "./resNet34.pth"
model.load_state_dict(torch.load(model_weight_path, map_location=device))#載入訓(xùn)練好的模型參數(shù)
model.eval()#使用eval()模式
with torch.no_grad():#不跟蹤損失梯度
    # predict class
    output = torch.squeeze(model(img))#壓縮batch維度
    predict = torch.softmax(output, dim=0)#通過softmax得到概率分布
    predict_cla = torch.argmax(predict).numpy()#尋找最大值所對應(yīng)的索引
print(class_indict[str(predict_cla)], predict[predict_cla].numpy())#打印類別信息和概率
plt.show()

感謝各位的閱讀!關(guān)于“怎么搭建resnet18網(wǎng)絡(luò)并加載torchvision自帶權(quán)重”這篇文章就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,讓大家可以學(xué)到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI