您好,登錄后才能下訂單哦!
這篇文章給大家分享的是有關(guān)pytorch怎樣實現(xiàn)線性回歸的內(nèi)容。小編覺得挺實用的,因此分享給大家做個參考,一起跟隨小編過來看看吧。
具體內(nèi)容如下
# 隨機初始化一個二維數(shù)據(jù)集,使用朋友torch訓練一個回歸模型 import numpy as np import random import matplotlib.pyplot as plt x = np.arange(20) y = np.array([5*x[i] + random.randint(1,20) for i in range(len(x))]) # random.randint(參數(shù)1,參數(shù)2)函數(shù)返回參數(shù)1和參數(shù)2之間的任意整數(shù) print('-'*50) # 打印數(shù)據(jù)集 print(x) print(y) import torch x_train = torch.from_numpy(x).float() y_train = torch.from_numpy(y).float() # model class LinearRegression(torch.nn.Module): def __init__(self): super(LinearRegression, self).__init__() # 輸入與輸出都是一維的 self.linear = torch.nn.Linear(1,1) def forward(self,x): return self.linear(x) # 新建模型,誤差函數(shù),優(yōu)化器 model = LinearRegression() criterion = torch.nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(),0.001) # 開始訓練 num_epoch = 20 for i in range(num_epoch): input_data = x_train.unsqueeze(1) target = y_train.unsqueeze(1) # unsqueeze(1)在第二維增加一個維度 out = model(input_data) loss = criterion(out,target) optimizer.zero_grad() loss.backward() optimizer.step() print("Eopch:[{}/{},loss:[{:.4f}]".format(i+1,num_epoch,loss.item())) if ((i+1)%2 == 0): predict = model(input_data) plt.plot(x_train.data.numpy(),predict.squeeze(1).data.numpy(),"r") loss = criterion(predict,target) plt.title("Loss:{:.4f}".format(loss.item())) plt.xlabel("X") plt.ylabel("Y") plt.scatter(x_train,y_train) plt.show()
實驗結(jié)果:
感謝各位的閱讀!關(guān)于“pytorch怎樣實現(xiàn)線性回歸”這篇文章就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,讓大家可以學到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!
免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。