溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

python源碼,樸素貝葉斯實現(xiàn)多分類

發(fā)布時間:2020-07-16 12:18:03 來源:網(wǎng)絡 閱讀:721 作者:nineteens 欄目:編程語言

  機器學習實戰(zhàn)中,樸素貝葉斯那一章節(jié)只實現(xiàn)了二分類,網(wǎng)上大多數(shù)博客也只是照搬書上的源碼,沒有弄懂實現(xiàn)的根本。在此梳理了一遍樸素貝葉斯的原理,實現(xiàn)了5分類的例子,也是自己的一點心得,交流一下。

  from numpy import *

  '''

  貝葉斯公式 p(ci|w) = p(w|ci)*p(ci) / p(w)

  即比較兩類別分子大小,把結果歸為分子大的一類

  p(w|ci)條件概率,即在類別1或0下,w(詞頻)出現(xiàn)的概率(詞頻/此類別總詞數(shù)即n/N)

  '''

  # 取得DataSet中不重復的word

  def createVocabList(dataSet):

  vocabSet = set([])#使用set創(chuàng)建不重復詞表庫

  for document in dataSet:

  vocabSet = vocabSet | set(document) #創(chuàng)建兩個集合的并集

  return list(vocabSet)

  '''

  我們將每個詞的出現(xiàn)與否作為一個特征,這可以被描述為詞集模型(set-of-words model)。

  在詞集中,每個詞只能出現(xiàn)一次。

  '''

  def setOfWords2Vec(vocabList, inputSet):

  returnVec = [0]*len(vocabList)#創(chuàng)建一個所包含元素都為0的向量

  #遍歷文檔中的所有單詞,如果出現(xiàn)了詞匯表中的單詞,則將輸出的文檔向量中的對應值設為1

  for word in inputSet:

  if word in vocabList:

  returnVec[vocabList.index(word)] = 1

  else: print("the word: %s is not in my Vocabulary!" % word)

  return returnVec

  '''

  如果一個詞在文檔中出現(xiàn)不止一次,這可能意味著包含該詞是否出現(xiàn)在文檔中所不能表達的某種信息,

  這種方法被稱為詞袋模型(bag-of-words model)。

  在詞袋中,每個單詞可以出現(xiàn)多次。

  為適應詞袋模型,需要對函數(shù)setOfWords2Vec稍加修改,修改后的函數(shù)稱為bagOfWords2VecMN

  '''

  def bagOfWords2Vec(vocabList, inputSet):

  returnVec = [0]*len(vocabList)

  for word in inputSet:

  if word in vocabList:

  returnVec[vocabList.index(word)] += 1

  return returnVec

  def countX(aList,el):

  count = 0

  for item in aList:

  if item == el:

  count += 1

  return count

  def trainNB0(trainMatrix,trainCategory):

  '''

  trainMatrix:文檔矩陣

  trainCategory:每篇文檔類別標簽

  '''

  numTrainDocs = len(trainMatrix)

  numWords = len(trainMatrix[0])

  pAbusive0 = countX(trainCategory,0) / float(numTrainDocs)

  pAbusive1 = countX(trainCategory,1) / float(numTrainDocs)

  pAbusive2 = countX(trainCategory,2) / float(numTrainDocs)

  pAbusive3 = countX(trainCategory,3) / float(numTrainDocs)

  pAbusive4 = countX(trainCategory,4) / float(numTrainDocs)

  #初始化所有詞出現(xiàn)數(shù)為1,并將分母初始化為2,避免某一個概率值為0

  p0Num = ones(numWords); p1Num = ones(numWords)

  p2Num = ones(numWords)

  p3Num = ones(numWords)

  p4Num = ones(numWords)

  p0Denom = 2.0; p1Denom = 2.0 ;p2Denom = 2.0

  p3Denom = 2.0; p4Denom = 2.0

  for i in range(numTrainDocs):

  # 1類的矩陣相加

  if trainCategory[i] == 1:

  p1Num += trainMatrix[i]

  p1Denom += sum(trainMatrix[i])

  if trainCategory[i] == 2:

  p2Num += trainMatrix[i]

  p2Denom += sum(trainMatrix[i])

  if trainCategory[i] == 3:

  p3Num += trainMatrix[i]

  p3Denom += sum(trainMatrix[i])

  if trainCategory[i] == 4:

  p4Num += trainMatrix[i]

  p4Denom += sum(trainMatrix[i])

  if trainCategory[i] == 0:

  p0Num += trainMatrix[i]

  p0Denom += sum(trainMatrix[i])

  #將結果取自然對數(shù),避免下溢出,即太多很小的數(shù)相乘造成的影響

  p4Vect = log(p4Num/p4Denom)

  p3Vect = log(p3Num/p3Denom)

  p2Vect = log(p2Num/p2Denom)

  p1Vect = log(p1Num/p1Denom)#change to log()

  p0Vect = log(p0Num/p0Denom)#change to log()

  return p0Vect,p1Vect,p2Vect,p3Vect,p4Vect,pAbusive0,pAbusive1,pAbusive2,pAbusive3,pAbusive4

  def classifyNB(vec2Classify,p0Vec,p1Vec,p2Vec,p3Vec,p4Vec,pClass0,pClass1,pClass2,pClass3,pClass4):

  p1 = sum(vec2Classify * p1Vec) + log(pClass1)

  p2 = sum(vec2Classify * p2Vec) + log(pClass2)

  p3 = sum(vec2Classify * p3Vec) + log(pClass3)

  p4 = sum(vec2Classify * p4Vec) + log(pClass4)

  p0 = sum(vec2Classify * p0Vec) + log(pClass0)

  ## print(p0,p1,p2,p3,p4)無錫人流醫(yī)院 http://www.bhnkyy39.com/

  return [p0,p1,p2,p3,p4].index(max([p0,p1,p2,p3,p4]))

  if __name__ == "__main__":

  dataset = [['my','dog','has','flea','problems','help','please'],

  ['maybe','not','take','him','to','dog','park','stupid'],

  ['my','dalmation','is','so','cute','I','love','him'],

  ['stop','posting','stupid','worthless','garbage'],

  ['mr','licks','ate','my','steak','how','to','stop','him'],

  ['quit','buying','worthless','dog','food','stupid'],

  ['i','love','you'],

  ['you','kiss','me'],

  ['hate','heng','no'],

  ['can','i','hug','you'],

  ['refuse','me','ache'],

  ['1','4','3'],

  ['5','2','3'],

  ['1','2','3']]

  # 0,1,2,3,4分別表示不同類別

  classVec = [0,1,0,1,0,1,2,2,4,2,4,3,3,3]

  print("正在創(chuàng)建詞頻列表")

  myVocabList = createVocabList(dataset)

  print("正在建詞向量")

  trainMat = []

  for postinDoc in dataset:

  trainMat.append(setOfWords2Vec(myVocabList,postinDoc))

  print("開始訓練")

  p0V,p1V,p2V,p3V,p4V,pAb0,pAb1,pAb2,pAb3,pAb4 = trainNB0(array(trainMat),array(classVec))

  # 輸入的測試案例

  tmp = ['love','you','kiss','you']

  thisDoc = array(setOfWords2Vec(myVocabList,tmp))

  flag = classifyNB(thisDoc,p0V,p1V,p2V,p3V,p4V,pAb0,pAb1,pAb2,pAb3,pAb4)

  print('flag is',flag)


向AI問一下細節(jié)

免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權內(nèi)容。

AI