溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

使用python與opencv怎么實現(xiàn)一個運動檢測器功能

發(fā)布時間:2021-03-04 14:29:57 來源:億速云 閱讀:195 作者:Leah 欄目:開發(fā)技術(shù)

使用python與opencv怎么實現(xiàn)一個運動檢測器功能?很多新手對此不是很清楚,為了幫助大家解決這個難題,下面小編將為大家詳細講解,有這方面需求的人可以來學習下,希望你能有所收獲。

Python主要用來做什么

Python主要應(yīng)用于:1、Web開發(fā);2、數(shù)據(jù)科學研究;3、網(wǎng)絡(luò)爬蟲;4、嵌入式應(yīng)用開發(fā);5、游戲開發(fā);6、桌面應(yīng)用開發(fā)。

import pandas

firstframe = None
status = [None,None]
df = pandas.DataFrame(columns=["start","end"])
cap = cv2.VideoCapture(1)
while True:
  check,colorframe = cap.read()
  status = 0
  gray = cv2.cvtColor(colorframe,cv2.COLOR_BGR2GRAY)
  gray = cv2.GaussianBlur(gray,(21,21),0) #高斯模糊去除噪聲
  if firstframe is None:
    firstframe = gray
    continue #捕獲第一個灰度幀 得到第一幀后不進行后續(xù)處理
  delta_frame = cv2.absdiff(firstframe,gray)
  # ,我們需要找出第一幀和當前幀之間的區(qū)別。因此,我們使用absdiff函數(shù)并將得到的結(jié)果稱為delta幀。對于我們的用例來說,僅僅找到一個差異是不夠的,所以我們需要定義一個像素閾值,它可以被視為真實的對象。我們可以選擇30像素作為標準閾值,并將標準閾值的顏色定義為白色(顏色代碼:255). 二元閾值函數(shù)THRESH_BINARY返回一個元組值,其中只有第二項([0]是第一項,[1]是第二項)包含生成的閾值幀。二元閾值函數(shù)用于處理含有2個離散值的非連續(xù)函數(shù):如0或1。如果攝影機前面沒有對象,我們將當前幀的狀態(tài)視為0;如果攝影機前面存在對象,則將當前幀的狀態(tài)視為1。 

  thresh_frame = cv2.threshold(delta_frame,30,255,cv2.THRESH_BINARY)[1]
  thresh_frame = cv2.dilate(thresh_frame,None,iterations=3)
  # 在膨脹函數(shù)Dilate中,我們可以通過設(shè)置迭代次數(shù)來設(shè)置平滑度。迭代次數(shù)越多,平滑度越高,處理時間也就越長。因此,建議保持標準化設(shè)置為3。膨脹函數(shù)中的“None”參數(shù)表示我們的應(yīng)用中不需要元素結(jié)構(gòu)。 

#聲明元組的語法 (cnts,_)
  (cnts,_) = cv2.findContours(thresh_frame.copy(),cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
  for contours in cnts :
    if cv2.contourArea(contours) < 10000:
      continue
    if cv2.contourArea(contours) < 20000:
     status = 1
     (x,y,w,h) = cv2.boundingRect(contours)
     cv2.rectangle(colorframe,(x,y),(x+w,y+h),(0,0,255),3)
     cv2.imshow("cc",colorframe)
  key = cv2.waitKey(1)
  if key == ord('q'):
    break

看完上述內(nèi)容是否對您有幫助呢?如果還想對相關(guān)知識有進一步的了解或閱讀更多相關(guān)文章,請關(guān)注億速云行業(yè)資訊頻道,感謝您對億速云的支持。

向AI問一下細節(jié)

免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI