您好,登錄后才能下訂單哦!
這篇文章將為大家詳細(xì)講解有關(guān)使用OpenCV與TensorFlow怎么實(shí)現(xiàn)一個(gè)人臉識(shí)別功能,文章內(nèi)容質(zhì)量較高,因此小編分享給大家做個(gè)參考,希望大家閱讀完這篇文章后對(duì)相關(guān)知識(shí)有一定的了解。
一. 獲取數(shù)據(jù)集的所有路徑
利用os模塊來(lái)生成一個(gè)包含所有數(shù)據(jù)路徑的list
def my_face(): path = os.listdir("./my_faces") image_path = [os.path.join("./my_faces/",img) for img in path] return image_path def other_face(): path = os.listdir("./other_faces") image_path = [os.path.join("./other_faces/",img) for img in path] return image_path image_path = my_face().__add__(other_face()) #將兩個(gè)list合并成為一個(gè)list
二. 構(gòu)造標(biāo)簽
標(biāo)簽的構(gòu)造較為簡(jiǎn)單,1表示本人,0表示其他人。
label_my= [1 for i in my_face()] label_other = [0 for i in other_face()] label = label_my.__add__(label_other) #合并兩個(gè)list
三.構(gòu)造數(shù)據(jù)集
利用tf.data.Dataset.from_tensor_slices()構(gòu)造數(shù)據(jù)集,
def preprocess(x,y): x = tf.io.read_file(x) #讀取數(shù)據(jù) x = tf.image.decode_jpeg(x,channels=3) #解碼成jpg格式的數(shù)據(jù) x = tf.cast(x,tf.float32) / 255.0 #歸一化 y = tf.convert_to_tensor(y) #轉(zhuǎn)成tensor return x,y data = tf.data.Dataset.from_tensor_slices((image_path,label)) data_loader = data.repeat().shuffle(5000).map(preprocess).batch(128).prefetch(1)
四.構(gòu)造模型
class CNN_WORK(Model): def __init__(self): super(CNN_WORK,self).__init__() self.conv1 = layers.Conv2D(32,kernel_size=5,activation=tf.nn.relu) self.maxpool1 = layers.MaxPool2D(2,strides=2) self.conv2 = layers.Conv2D(64,kernel_size=3,activation=tf.nn.relu) self.maxpool2 = layers.MaxPool2D(2,strides=2) self.flatten = layers.Flatten() self.fc1 = layers.Dense(1024) self.dropout = layers.Dropout(rate=0.5) self.out = layers.Dense(2) def call(self,x,is_training=False): x = self.conv1(x) x = self.maxpool1(x) x = self.conv2(x) x = self.maxpool2(x) x = self.flatten(x) x = self.fc1(x) x = self.dropout(x,training=is_training) x = self.out(x) if not is_training: x = tf.nn.softmax(x) return x model = CNN_WORK()
五.定義損失函數(shù),精度函數(shù),優(yōu)化函數(shù)
def cross_entropy_loss(x,y): y = tf.cast(y,tf.int64) loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,logits=x) return tf.reduce_mean(loss) def accuracy(y_pred,y_true): correct_pred = tf.equal(tf.argmax(y_pred,1),tf.cast(y_true,tf.int64)) return tf.reduce_mean(tf.cast(correct_pred,tf.float32),axis=-1) optimizer = tf.optimizers.SGD(0.002)
六.開始跑步我們的模型
def run_optimizer(x,y): with tf.GradientTape() as g: pred = model(x,is_training=True) loss = cross_entropy_loss(pred,y) training_variabel = model.trainable_variables gradient = g.gradient(loss,training_variabel) optimizer.apply_gradients(zip(gradient,training_variabel)) model.save_weights("face_weight") #保存模型
最后跑的準(zhǔn)確率還是挺高的。
七.openCV登場(chǎng)
最后利用OpenCV的人臉檢測(cè)模塊,將檢測(cè)到的人臉?biāo)腿氲轿覀冇?xùn)練好了的模型中進(jìn)行預(yù)測(cè)根據(jù)預(yù)測(cè)的結(jié)果進(jìn)行標(biāo)識(shí)。
cap = cv2.VideoCapture(0) face_cascade = cv2.CascadeClassifier('C:\\Users\Wuhuipeng\AppData\Local\Programs\Python\Python36\Lib\site-packages\cv2\data/haarcascade_frontalface_alt.xml') while True: ret,frame = cap.read() gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray,scaleFactor=1.2,minNeighbors=5,minSize=(5,5)) for (x,y,z,t) in faces: img = frame[x:x+z,y:y+t] try: img = cv2.resize(img,(64,64)) img = tf.cast(img,tf.float32) / 255.0 img = tf.reshape(img,[-1,64,64,3]) pred = model(img) pred = tf.argmax(pred,axis=1).numpy() except: pass if(pred[0]==1): cv2.putText(frame,"wuhuipeng",(x-10,y-10),cv2.FONT_HERSHEY_SIMPLEX,1.2,(255,255,0),2) cv2.rectangle(frame,(x,y),(x+z,y+t),(0,255,0),2) cv2.imshow('find faces',frame) if cv2.waitKey(1)&0xff ==ord('q'): break cap.release() cv2.destroyAllWindows()
關(guān)于使用OpenCV與TensorFlow怎么實(shí)現(xiàn)一個(gè)人臉識(shí)別功能就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,可以學(xué)到更多知識(shí)。如果覺得文章不錯(cuò),可以把它分享出去讓更多的人看到。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。