您好,登錄后才能下訂單哦!
這篇文章主要講解了用python進(jìn)行時(shí)間序列分析的方法,內(nèi)容清晰明了,對(duì)此有興趣的小伙伴可以學(xué)習(xí)一下,相信大家閱讀完之后會(huì)有幫助。
什么是時(shí)間序列
時(shí)間序列簡單的說就是各時(shí)間點(diǎn)上形成的數(shù)值序列,時(shí)間序列分析就是通過觀察歷史數(shù)據(jù)預(yù)測未來的值。在這里需要強(qiáng)調(diào)一點(diǎn)的是,時(shí)間序列分析并不是關(guān)于時(shí)間的回歸,它主要是研究自身的變化規(guī)律的(這里不考慮含外生變量的時(shí)間序列)。
為什么用python
用兩個(gè)字總結(jié)“情懷”,愛屋及烏,個(gè)人比較喜歡python,就用python擼了。能做時(shí)間序列的軟件很多,SAS、R、SPSS、Eviews甚至matlab等等,實(shí)際工作中應(yīng)用得比較多的應(yīng)該還是SAS和R,前者推薦王燕寫的《應(yīng)用時(shí)間序列分析》,后者推薦“基于R語言的時(shí)間序列建模完整教程”這篇博文(翻譯版)。python作為科學(xué)計(jì)算的利器,當(dāng)然也有相關(guān)分析的包:statsmodels中tsa模塊,當(dāng)然這個(gè)包和SAS、R是比不了,但是python有另一個(gè)神器:pandas!pandas在時(shí)間序列上的應(yīng)用,能簡化我們很多的工作。
環(huán)境配置
python推薦直接裝Anaconda,它集成了許多科學(xué)計(jì)算包,有一些包自己手動(dòng)去裝還是挺費(fèi)勁的。statsmodels需要自己去安裝,這里我推薦使用0.6的穩(wěn)定版,0.7及其以上的版本能在github上找到,該版本在安裝時(shí)會(huì)用C編譯好,所以修改底層的一些代碼將不會(huì)起作用。
時(shí)間序列分析
1.基本模型
自回歸移動(dòng)平均模型(ARMA(p,q))是時(shí)間序列中最為重要的模型之一,它主要由兩部分組成: AR代表p階自回歸過程,MA代表q階移動(dòng)平均過程,其公式如下:
依據(jù)模型的形式、特性及自相關(guān)和偏自相關(guān)函數(shù)的特征,總結(jié)如下:
在時(shí)間序列中,ARIMA模型是在ARMA模型的基礎(chǔ)上多了差分的操作。
2.pandas時(shí)間序列操作
大熊貓真的很可愛,這里簡單介紹一下它在時(shí)間序列上的可愛之處。和許多時(shí)間序列分析一樣,本文同樣使用航空乘客數(shù)據(jù)(AirPassengers.csv)作為樣例。
數(shù)據(jù)讀取:
# -*- coding:utf-8 -*- import numpy as np import pandas as pdfrom datetime import datetimeimport matplotlib.pylab as plt # 讀取數(shù)據(jù),pd.read_csv默認(rèn)生成DataFrame對(duì)象,需將其轉(zhuǎn)換成Series對(duì)象df = pd.read_csv('AirPassengers.csv', encoding='utf-8', index_col='date')df.index = pd.to_datetime(df.index) # 將字符串索引轉(zhuǎn)換成時(shí)間索引ts = df['x'] # 生成pd.Series對(duì)象# 查看數(shù)據(jù)格式ts.head()ts.head().index
查看某日的值既可以使用字符串作為索引,又可以直接使用時(shí)間對(duì)象作為索引
兩者的返回值都是第一個(gè)序列值:112
如果要查看某一年的數(shù)據(jù),pandas也能非常方便的實(shí)現(xiàn)
ts['1949']
切片操作:
ts['1949-1' : '1949-6']
注意時(shí)間索引的切片操作起點(diǎn)和尾部都是包含的,這點(diǎn)與數(shù)值索引有所不同
pandas還有很多方便的時(shí)間序列函數(shù),在后面的實(shí)際應(yīng)用中在進(jìn)行說明。
3. 平穩(wěn)性檢驗(yàn)
我們知道序列平穩(wěn)性是進(jìn)行時(shí)間序列分析的前提條件,很多人都會(huì)有疑問,為什么要滿足平穩(wěn)性的要求呢?在大數(shù)定理和中心定理中要求樣本同分布(這里同分布等價(jià)于時(shí)間序列中的平穩(wěn)性),而我們的建模過程中有很多都是建立在大數(shù)定理和中心極限定理的前提條件下的,如果它不滿足,得到的許多結(jié)論都是不可靠的。以虛假回歸為例,當(dāng)響應(yīng)變量和輸入變量都平穩(wěn)時(shí),我們用t統(tǒng)計(jì)量檢驗(yàn)標(biāo)準(zhǔn)化系數(shù)的顯著性。而當(dāng)響應(yīng)變量和輸入變量不平穩(wěn)時(shí),其標(biāo)準(zhǔn)化系數(shù)不在滿足t分布,這時(shí)再用t檢驗(yàn)來進(jìn)行顯著性分析,導(dǎo)致拒絕原假設(shè)的概率增加,即容易犯第一類錯(cuò)誤,從而得出錯(cuò)誤的結(jié)論。
平穩(wěn)時(shí)間序列有兩種定義:嚴(yán)平穩(wěn)和寬平穩(wěn)
嚴(yán)平穩(wěn)顧名思義,是一種條件非常苛刻的平穩(wěn)性,它要求序列隨著時(shí)間的推移,其統(tǒng)計(jì)性質(zhì)保持不變。對(duì)于任意的τ,其聯(lián)合概率密度函數(shù)滿足:
嚴(yán)平穩(wěn)的條件只是理論上的存在,現(xiàn)實(shí)中用得比較多的是寬平穩(wěn)的條件。
寬平穩(wěn)也叫弱平穩(wěn)或者二階平穩(wěn)(均值和方差平穩(wěn)),它應(yīng)滿足:
平穩(wěn)性檢驗(yàn):觀察法和單位根檢驗(yàn)法
基于此,我寫了一個(gè)名為test_stationarity的統(tǒng)計(jì)性檢驗(yàn)?zāi)K,以便將某些統(tǒng)計(jì)檢驗(yàn)結(jié)果更加直觀的展現(xiàn)出來。
# -*- coding:utf-8 -*- from statsmodels.tsa.stattools import adfuller import pandas as pd import matplotlib.pyplot as plt import numpy as np from statsmodels.graphics.tsaplots import plot_acf, plot_pacf # 移動(dòng)平均圖 def draw_trend(timeSeries, size): f = plt.figure(facecolor='white') # 對(duì)size個(gè)數(shù)據(jù)進(jìn)行移動(dòng)平均 rol_mean = timeSeries.rolling(window=size).mean() # 對(duì)size個(gè)數(shù)據(jù)進(jìn)行加權(quán)移動(dòng)平均 rol_weighted_mean = pd.ewma(timeSeries, span=size) timeSeries.plot(color='blue', label='Original') rolmean.plot(color='red', label='Rolling Mean') rol_weighted_mean.plot(color='black', label='Weighted Rolling Mean') plt.legend(loc='best') plt.title('Rolling Mean') plt.show() def draw_ts(timeSeries): f = plt.figure(facecolor='white') timeSeries.plot(color='blue') plt.show() ''' Unit Root Test The null hypothesis of the Augmented Dickey-Fuller is that there is a unit root, with the alternative that there is no unit root. That is to say the bigger the p-value the more reason we assert that there is a unit root ''' def testStationarity(ts): dftest = adfuller(ts) # 對(duì)上述函數(shù)求得的值進(jìn)行語義描述 dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used']) for key,value in dftest[4].items(): dfoutput['Critical Value (%s)'%key] = value return dfoutput # 自相關(guān)和偏相關(guān)圖,默認(rèn)階數(shù)為31階 def draw_acf_pacf(ts, lags=31): f = plt.figure(facecolor='white') ax1 = f.add_subplot(211) plot_acf(ts, lags=31, ax=ax1) ax2 = f.add_subplot(212) plot_pacf(ts, lags=31, ax=ax2) plt.show()
觀察法,通俗的說就是通過觀察序列的趨勢圖與相關(guān)圖是否隨著時(shí)間的變化呈現(xiàn)出某種規(guī)律。所謂的規(guī)律就是時(shí)間序列經(jīng)常提到的周期性因素,現(xiàn)實(shí)中遇到得比較多的是線性周期成分,這類周期成分可以采用差分或者移動(dòng)平均來解決,而對(duì)于非線性周期成分的處理相對(duì)比較復(fù)雜,需要采用某些分解的方法。下圖為航空數(shù)據(jù)的線性圖,可以明顯的看出它具有年周期成分和長期趨勢成分。平穩(wěn)序列的自相關(guān)系數(shù)會(huì)快速衰減,下面的自相關(guān)圖并不能體現(xiàn)出該特征,所以我們有理由相信該序列是不平穩(wěn)的。
單位根檢驗(yàn):ADF是一種常用的單位根檢驗(yàn)方法,他的原假設(shè)為序列具有單位根,即非平穩(wěn),對(duì)于一個(gè)平穩(wěn)的時(shí)序數(shù)據(jù),就需要在給定的置信水平上顯著,拒絕原假設(shè)。ADF只是單位根檢驗(yàn)的方法之一,如果想采用其他檢驗(yàn)方法,可以安裝第三方包arch,里面提供了更加全面的單位根檢驗(yàn)方法,個(gè)人還是比較鐘情ADF檢驗(yàn)。以下為檢驗(yàn)結(jié)果,其p值大于0.99,說明并不能拒絕原假設(shè)。
3. 平穩(wěn)性處理
由前面的分析可知,該序列是不平穩(wěn)的,然而平穩(wěn)性是時(shí)間序列分析的前提條件,故我們需要對(duì)不平穩(wěn)的序列進(jìn)行處理將其轉(zhuǎn)換成平穩(wěn)的序列。
a. 對(duì)數(shù)變換
對(duì)數(shù)變換主要是為了減小數(shù)據(jù)的振動(dòng)幅度,使其線性規(guī)律更加明顯(我是這么理解的時(shí)間序列模型大部分都是線性的,為了盡量降低非線性的因素,需要對(duì)其進(jìn)行預(yù)處理,也許我理解的不對(duì))。對(duì)數(shù)變換相當(dāng)于增加了一個(gè)懲罰機(jī)制,數(shù)據(jù)越大其懲罰越大,數(shù)據(jù)越小懲罰越小。這里強(qiáng)調(diào)一下,變換的序列需要滿足大于0,小于0的數(shù)據(jù)不存在對(duì)數(shù)變換。
ts_log = np.log(ts) test_stationarity.draw_ts(ts_log)
b. 平滑法
根據(jù)平滑技術(shù)的不同,平滑法具體分為移動(dòng)平均法和指數(shù)平均法。
移動(dòng)平均即利用一定時(shí)間間隔內(nèi)的平均值作為某一期的估計(jì)值,而指數(shù)平均則是用變權(quán)的方法來計(jì)算均值
test_stationarity.draw_trend(ts_log, 12)
從上圖可以發(fā)現(xiàn)窗口為12的移動(dòng)平均能較好的剔除年周期性因素,而指數(shù)平均法是對(duì)周期內(nèi)的數(shù)據(jù)進(jìn)行了加權(quán),能在一定程度上減小年周期因素,但并不能完全剔除,如要完全剔除可以進(jìn)一步進(jìn)行差分操作。
c. 差分
時(shí)間序列最常用來剔除周期性因素的方法當(dāng)屬差分了,它主要是對(duì)等周期間隔的數(shù)據(jù)進(jìn)行線性求減。前面我們說過,ARIMA模型相對(duì)ARMA模型,僅多了差分操作,ARIMA模型幾乎是所有時(shí)間序列軟件都支持的,差分的實(shí)現(xiàn)與還原都非常方便。而statsmodel中,對(duì)差分的支持不是很好,它不支持高階和多階差分,為什么不支持,這里引用作者的說法:
作者大概的意思是說預(yù)測方法中并沒有解決高于2階的差分,有沒有感覺很牽強(qiáng),不過沒關(guān)系,我們有pandas。我們可以先用pandas將序列差分好,然后在對(duì)差分好的序列進(jìn)行ARIMA擬合,只不過這樣后面會(huì)多了一步人工還原的工作。
diff_12 = ts_log.diff(12) diff_12.dropna(inplace=True) diff_12_1 = diff_12.diff(1) diff_12_1.dropna(inplace=True) test_stationarity.testStationarity(diff_12_1)
從上面的統(tǒng)計(jì)檢驗(yàn)結(jié)果可以看出,經(jīng)過12階差分和1階差分后,該序列滿足平穩(wěn)性的要求了。
d. 分解
所謂分解就是將時(shí)序數(shù)據(jù)分離成不同的成分。statsmodels使用的X-11分解過程,它主要將時(shí)序數(shù)據(jù)分離成長期趨勢、季節(jié)趨勢和隨機(jī)成分。與其它統(tǒng)計(jì)軟件一樣,statsmodels也支持兩類分解模型,加法模型和乘法模型,這里我只實(shí)現(xiàn)加法,乘法只需將model的參數(shù)設(shè)置為"multiplicative"即可。
from statsmodels.tsa.seasonal import seasonal_decompose decomposition = seasonal_decompose(ts_log, model="additive") trend = decomposition.trend seasonal = decomposition.seasonal residual = decomposition.resid
得到不同的分解成分后,就可以使用時(shí)間序列模型對(duì)各個(gè)成分進(jìn)行擬合,當(dāng)然也可以選擇其他預(yù)測方法。我曾經(jīng)用過小波對(duì)時(shí)序數(shù)據(jù)進(jìn)行過分解,然后分別采用時(shí)間序列擬合,效果還不錯(cuò)。由于我對(duì)小波的理解不是很好,只能簡單的調(diào)用接口,如果有誰對(duì)小波、傅里葉、卡爾曼理解得比較透,可以將時(shí)序數(shù)據(jù)進(jìn)行更加準(zhǔn)確的分解,由于分解后的時(shí)序數(shù)據(jù)避免了他們?cè)诮r(shí)的交叉影響,所以我相信它將有助于預(yù)測準(zhǔn)確性的提高。
4. 模型識(shí)別
在前面的分析可知,該序列具有明顯的年周期與長期成分。對(duì)于年周期成分我們使用窗口為12的移動(dòng)平進(jìn)行處理,對(duì)于長期趨勢成分我們采用1階差分來進(jìn)行處理。
rol_mean = ts_log.rolling(window=12).mean() rol_mean.dropna(inplace=True) ts_diff_1 = rol_mean.diff(1) ts_diff_1.dropna(inplace=True) test_stationarity.testStationarity(ts_diff_1)
觀察其統(tǒng)計(jì)量發(fā)現(xiàn)該序列在置信水平為95%的區(qū)間下并不顯著,我們對(duì)其進(jìn)行再次一階差分。再次差分后的序列其自相關(guān)具有快速衰減的特點(diǎn),t統(tǒng)計(jì)量在99%的置信水平下是顯著的,這里我不再做詳細(xì)說明。
ts_diff_2 = ts_diff_1.diff(1) ts_diff_2.dropna(inplace=True)
數(shù)據(jù)平穩(wěn)后,需要對(duì)模型定階,即確定p、q的階數(shù)。觀察上圖,發(fā)現(xiàn)自相關(guān)和偏相系數(shù)都存在拖尾的特點(diǎn),并且他們都具有明顯的一階相關(guān)性,所以我們?cè)O(shè)定p=1, q=1。下面就可以使用ARMA模型進(jìn)行數(shù)據(jù)擬合了。這里我不使用ARIMA(ts_diff_1, order=(1, 1, 1))進(jìn)行擬合,是因?yàn)楹胁罘植僮鲿r(shí),預(yù)測結(jié)果還原老出問題,至今還沒弄明白。
from statsmodels.tsa.arima_model import ARMA model = ARMA(ts_diff_2, order=(1, 1)) result_arma = model.fit( disp=-1, method='css')
5. 樣本擬合
模型擬合完后,我們就可以對(duì)其進(jìn)行預(yù)測了。由于ARMA擬合的是經(jīng)過相關(guān)預(yù)處理后的數(shù)據(jù),故其預(yù)測值需要通過相關(guān)逆變換進(jìn)行還原。
predict_ts = result_arma.predict() # 一階差分還原diff_shift_ts = ts_diff_1.shift(1)diff_recover_1 = predict_ts.add(diff_shift_ts)# 再次一階差分還原 rol_shift_ts = rol_mean.shift(1) diff_recover = diff_recover_1.add(rol_shift_ts) # 移動(dòng)平均還原 rol_sum = ts_log.rolling(window=11).sum() rol_recover = diff_recover*12 - rol_sum.shift(1) # 對(duì)數(shù)還原 log_recover = np.exp(rol_recover) log_recover.dropna(inplace=True)
我們使用均方根誤差(RMSE)來評(píng)估模型樣本內(nèi)擬合的好壞。利用該準(zhǔn)則進(jìn)行判別時(shí),需要剔除“非預(yù)測”數(shù)據(jù)的影響。
ts = ts[log_recover.index] # 過濾沒有預(yù)測的記錄plt.figure(facecolor='white') log_recover.plot(color='blue', label='Predict') ts.plot(color='red', label='Original') plt.legend(loc='best') plt.title('RMSE: %.4f'% np.sqrt(sum((log_recover-ts)**2)/ts.size)) plt.show()
觀察上圖的擬合效果,均方根誤差為11.8828,感覺還過得去。
6.完善ARIMA模型
前面提到statsmodels里面的ARIMA模塊不支持高階差分,我們的做法是將差分分離出來,但是這樣會(huì)多了一步人工還原的操作?;谏鲜鰡栴},我將差分過程進(jìn)行了封裝,使序列能按照指定的差分列表依次進(jìn)行差分,并相應(yīng)的構(gòu)造了一個(gè)還原的方法,實(shí)現(xiàn)差分序列的自動(dòng)還原。
# 差分操作 def diff_ts(ts, d): global shift_ts_list # 動(dòng)態(tài)預(yù)測第二日的值時(shí)所需要的差分序列 global last_data_shift_list shift_ts_list = [] last_data_shift_list = [] tmp_ts = ts for i in d: last_data_shift_list.append(tmp_ts[-i]) print last_data_shift_list shift_ts = tmp_ts.shift(i) shift_ts_list.append(shift_ts) tmp_ts = tmp_ts - shift_ts tmp_ts.dropna(inplace=True) return tmp_ts # 還原操作 def predict_diff_recover(predict_value, d): if isinstance(predict_value, float): tmp_data = predict_value for i in range(len(d)): tmp_data = tmp_data + last_data_shift_list[-i-1] elif isinstance(predict_value, np.ndarray): tmp_data = predict_value[0] for i in range(len(d)): tmp_data = tmp_data + last_data_shift_list[-i-1] else: tmp_data = predict_value for i in range(len(d)): try: tmp_data = tmp_data.add(shift_ts_list[-i-1]) except: raise ValueError('What you input is not pd.Series type!') tmp_data.dropna(inplace=True) return tmp_data
現(xiàn)在我們直接使用差分的方法進(jìn)行數(shù)據(jù)處理,并以同樣的過程進(jìn)行數(shù)據(jù)預(yù)測與還原。
diffed_ts = diff_ts(ts_log, d=[12, 1]) model = arima_model(diffed_ts) model.certain_model(1, 1) predict_ts = model.properModel.predict() diff_recover_ts = predict_diff_recover(predict_ts, d=[12, 1]) log_recover = np.exp(diff_recover_ts)
是不是發(fā)現(xiàn)這里的預(yù)測結(jié)果和上一篇的使用12階移動(dòng)平均的預(yù)測結(jié)果一模一樣。這是因?yàn)?2階移動(dòng)平均加上一階差分與直接12階差分是等價(jià)的關(guān)系,后者是前者數(shù)值的12倍,這個(gè)應(yīng)該不難推導(dǎo)。
對(duì)于個(gè)數(shù)不多的時(shí)序數(shù)據(jù),我們可以通過觀察自相關(guān)圖和偏相關(guān)圖來進(jìn)行模型識(shí)別,倘若我們要分析的時(shí)序數(shù)據(jù)量較多,例如要預(yù)測每只股票的走勢,我們就不可能逐個(gè)去調(diào)參了。這時(shí)我們可以依據(jù)BIC準(zhǔn)則識(shí)別模型的p, q值,通常認(rèn)為BIC值越小的模型相對(duì)更優(yōu)。這里我簡單介紹一下BIC準(zhǔn)則,它綜合考慮了殘差大小和自變量的個(gè)數(shù),殘差越小BIC值越小,自變量個(gè)數(shù)越多BIC值越大。個(gè)人覺得BIC準(zhǔn)則就是對(duì)模型過擬合設(shè)定了一個(gè)標(biāo)準(zhǔn)(過擬合這東西應(yīng)該以辯證的眼光看待)。
def proper_model(data_ts, maxLag): init_bic = sys.maxint init_p = 0 init_q = 0 init_properModel = None for p in np.arange(maxLag): for q in np.arange(maxLag): model = ARMA(data_ts, order=(p, q)) try: results_ARMA = model.fit(disp=-1, method='css') except: continue bic = results_ARMA.bic if bic < init_bic: init_p = p init_q = q init_properModel = results_ARMA init_bic = bic return init_bic, init_p, init_q, init_properModel
相對(duì)最優(yōu)參數(shù)識(shí)別結(jié)果:BIC: -1090.44209358 p: 0 q: 1 ,RMSE:11.8817198331。我們發(fā)現(xiàn)模型自動(dòng)識(shí)別的參數(shù)要比我手動(dòng)選取的參數(shù)更優(yōu)。
7.滾動(dòng)預(yù)測
所謂滾動(dòng)預(yù)測是指通過添加最新的數(shù)據(jù)預(yù)測第二天的值。對(duì)于一個(gè)穩(wěn)定的預(yù)測模型,不需要每天都去擬合,我們可以給他設(shè)定一個(gè)閥值,例如每周擬合一次,該期間只需通過添加最新的數(shù)據(jù)實(shí)現(xiàn)滾動(dòng)預(yù)測即可?;诖宋揖帉懥艘粋€(gè)名為arima_model的類,主要包含模型自動(dòng)識(shí)別方法,滾動(dòng)預(yù)測的功能,詳細(xì)代碼可以查看附錄。數(shù)據(jù)的動(dòng)態(tài)添加:
from dateutil.relativedelta import relativedeltadef _add_new_data(ts, dat, type='day'): if type == 'day': new_index = ts.index[-1] + relativedelta(days=1) elif type == 'month': new_index = ts.index[-1] + relativedelta(months=1) ts[new_index] = dat def add_today_data(model, ts, data, d, type='day'): _add_new_data(ts, data, type) # 為原始序列添加數(shù)據(jù) # 為滯后序列添加新值 d_ts = diff_ts(ts, d) model.add_today_data(d_ts[-1], type) def forecast_next_day_data(model, type='day'): if model == None: raise ValueError('No model fit before') fc = model.forecast_next_day_value(type) return predict_diff_recover(fc, [12, 1])
現(xiàn)在我們就可以使用滾動(dòng)預(yù)測的方法向外預(yù)測了,取1957年之前的數(shù)據(jù)作為訓(xùn)練數(shù)據(jù),其后的數(shù)據(jù)作為測試,并設(shè)定模型每第七天就會(huì)重新擬合一次。這里的diffed_ts對(duì)象會(huì)隨著add_today_data方法自動(dòng)添加數(shù)據(jù),這是由于它與add_today_data方法中的d_ts指向的同一對(duì)象,該對(duì)象會(huì)動(dòng)態(tài)的添加數(shù)據(jù)。
ts_train = ts_log[:'1956-12'] ts_test = ts_log['1957-1':] diffed_ts = diff_ts(ts_train, [12, 1]) forecast_list = [] for i, dta in enumerate(ts_test): if i%7 == 0: model = arima_model(diffed_ts) model.certain_model(1, 1) forecast_data = forecast_next_day_data(model, type='month') forecast_list.append(forecast_data) add_today_data(model, ts_train, dta, [12, 1], type='month') predict_ts = pd.Series(data=forecast_list, index=ts['1957-1':].index)log_recover = np.exp(predict_ts)original_ts = ts['1957-1':]
動(dòng)態(tài)預(yù)測的均方根誤差為:14.6479,與前面樣本內(nèi)擬合的均方根誤差相差不大,說明模型并沒有過擬合,并且整體預(yù)測效果都較好。
8. 模型序列化
在進(jìn)行動(dòng)態(tài)預(yù)測時(shí),我們不希望將整個(gè)模型一直在內(nèi)存中運(yùn)行,而是希望有新的數(shù)據(jù)到來時(shí)才啟動(dòng)該模型。這時(shí)我們就應(yīng)該把整個(gè)模型從內(nèi)存導(dǎo)出到硬盤中,而序列化正好能滿足該要求。序列化最常用的就是使用json模塊了,但是它是時(shí)間對(duì)象支持得不是很好,有人對(duì)json模塊進(jìn)行了拓展以使得支持時(shí)間對(duì)象,這里我們不采用該方法,我們使用pickle模塊,它和json的接口基本相同,有興趣的可以去查看一下。我在實(shí)際應(yīng)用中是采用的面向?qū)ο蟮木幊?,它的序列化主要是將類的屬性序列化即可,而在面向過程的編程中,模型序列化需要將需要序列化的對(duì)象公有化,這樣會(huì)使得對(duì)前面函數(shù)的參數(shù)改動(dòng)較大,我不在詳細(xì)闡述該過程。
總結(jié)
與其它統(tǒng)計(jì)語言相比,python在統(tǒng)計(jì)分析這塊還顯得不那么“專業(yè)”。隨著numpy、pandas、scipy、sklearn、gensim、statsmodels等包的推動(dòng),我相信也祝愿python在數(shù)據(jù)分析這塊越來越好。與SAS和R相比,python的時(shí)間序列模塊還不是很成熟,我這里僅起到拋磚引玉的作用,希望各位能人志士能貢獻(xiàn)自己的力量,使其更加完善。實(shí)際應(yīng)用中我全是面向過程來編寫的,為了闡述方便,我用面向過程重新羅列了一遍,實(shí)在感覺很不方便。原本打算分三篇來寫的,還有一部分實(shí)際應(yīng)用的部分,不打算再寫了,還請(qǐng)大家原諒。實(shí)際應(yīng)用主要是具體問題具體分析,這當(dāng)中第一步就是要查詢問題,這步花的時(shí)間往往會(huì)比較多,然后再是解決問題。以我前面項(xiàng)目遇到的問題為例,當(dāng)時(shí)遇到了以下幾個(gè)典型的問題:1.周期長度不恒定的周期成分,例如每月的1號(hào)具有周期性,但每月1號(hào)與1號(hào)之間的時(shí)間間隔是不相等的;2.含有缺失值以及含有記錄為0的情況無法進(jìn)行對(duì)數(shù)變換;3.節(jié)假日的影響等等。
附錄
# -*-coding:utf-8-*- import pandas as pd import numpy as np from statsmodels.tsa.arima_model import ARMA import sys from dateutil.relativedelta import relativedelta from copy import deepcopy import matplotlib.pyplot as plt class arima_model: def __init__(self, ts, maxLag=9): self.data_ts = ts self.resid_ts = None self.predict_ts = None self.maxLag = maxLag self.p = maxLag self.q = maxLag self.properModel = None self.bic = sys.maxint # 計(jì)算最優(yōu)ARIMA模型,將相關(guān)結(jié)果賦給相應(yīng)屬性 def get_proper_model(self): self._proper_model() self.predict_ts = deepcopy(self.properModel.predict()) self.resid_ts = deepcopy(self.properModel.resid) # 對(duì)于給定范圍內(nèi)的p,q計(jì)算擬合得最好的arima模型,這里是對(duì)差分好的數(shù)據(jù)進(jìn)行擬合,故差分恒為0 def _proper_model(self): for p in np.arange(self.maxLag): for q in np.arange(self.maxLag): # print p,q,self.bic model = ARMA(self.data_ts, order=(p, q)) try: results_ARMA = model.fit(disp=-1, method='css') except: continue bic = results_ARMA.bic # print 'bic:',bic,'self.bic:',self.bic if bic < self.bic: self.p = p self.q = q self.properModel = results_ARMA self.bic = bic self.resid_ts = deepcopy(self.properModel.resid) self.predict_ts = self.properModel.predict() # 參數(shù)確定模型 def certain_model(self, p, q): model = ARMA(self.data_ts, order=(p, q)) try: self.properModel = model.fit( disp=-1, method='css') self.p = p self.q = q self.bic = self.properModel.bic self.predict_ts = self.properModel.predict() self.resid_ts = deepcopy(self.properModel.resid) except: print 'You can not fit the model with this parameter p,q, ' \ 'please use the get_proper_model method to get the best model' # 預(yù)測第二日的值 def forecast_next_day_value(self, type='day'): # 我修改了statsmodels包中arima_model的源代碼,添加了constant屬性,需要先運(yùn)行forecast方法,為constant賦值 self.properModel.forecast() if self.data_ts.index[-1] != self.resid_ts.index[-1]: raise ValueError('''The index is different in data_ts and resid_ts, please add new data to data_ts. If you just want to forecast the next day data without add the real next day data to data_ts, please run the predict method which arima_model included itself''') if not self.properModel: raise ValueError('The arima model have not computed, please run the proper_model method before') para = self.properModel.params # print self.properModel.params if self.p == 0: # It will get all the value series with setting self.data_ts[-self.p:] when p is zero ma_value = self.resid_ts[-self.q:] values = ma_value.reindex(index=ma_value.index[::-1]) elif self.q == 0: ar_value = self.data_ts[-self.p:] values = ar_value.reindex(index=ar_value.index[::-1]) else: ar_value = self.data_ts[-self.p:] ar_value = ar_value.reindex(index=ar_value.index[::-1]) ma_value = self.resid_ts[-self.q:] ma_value = ma_value.reindex(index=ma_value.index[::-1]) values = ar_value.append(ma_value) predict_value = np.dot(para[1:], values) + self.properModel.constant[0] self._add_new_data(self.predict_ts, predict_value, type) return predict_value # 動(dòng)態(tài)添加數(shù)據(jù)函數(shù),針對(duì)索引是月份和日分別進(jìn)行處理 def _add_new_data(self, ts, dat, type='day'): if type == 'day': new_index = ts.index[-1] + relativedelta(days=1) elif type == 'month': new_index = ts.index[-1] + relativedelta(months=1) ts[new_index] = dat def add_today_data(self, dat, type='day'): self._add_new_data(self.data_ts, dat, type) if self.data_ts.index[-1] != self.predict_ts.index[-1]: raise ValueError('You must use the forecast_next_day_value method forecast the value of today before') self._add_new_data(self.resid_ts, self.data_ts[-1] - self.predict_ts[-1], type) if __name__ == '__main__': df = pd.read_csv('AirPassengers.csv', encoding='utf-8', index_col='date') df.index = pd.to_datetime(df.index) ts = df['x'] # 數(shù)據(jù)預(yù)處理 ts_log = np.log(ts) rol_mean = ts_log.rolling(window=12).mean() rol_mean.dropna(inplace=True) ts_diff_1 = rol_mean.diff(1) ts_diff_1.dropna(inplace=True) ts_diff_2 = ts_diff_1.diff(1) ts_diff_2.dropna(inplace=True) # 模型擬合 model = arima_model(ts_diff_2) # 這里使用模型參數(shù)自動(dòng)識(shí)別 model.get_proper_model() print 'bic:', model.bic, 'p:', model.p, 'q:', model.q print model.properModel.forecast()[0] print model.forecast_next_day_value(type='month') # 預(yù)測結(jié)果還原 predict_ts = model.properModel.predict() diff_shift_ts = ts_diff_1.shift(1) diff_recover_1 = predict_ts.add(diff_shift_ts) rol_shift_ts = rol_mean.shift(1) diff_recover = diff_recover_1.add(rol_shift_ts) rol_sum = ts_log.rolling(window=11).sum() rol_recover = diff_recover*12 - rol_sum.shift(1) log_recover = np.exp(rol_recover) log_recover.dropna(inplace=True) # 預(yù)測結(jié)果作圖 ts = ts[log_recover.index] plt.figure(facecolor='white') log_recover.plot(color='blue', label='Predict') ts.plot(color='red', label='Original') plt.legend(loc='best') plt.title('RMSE: %.4f'% np.sqrt(sum((log_recover-ts)**2)/ts.size)) plt.show()
修改的arima_model代碼
# Note: The information criteria add 1 to the number of parameters # whenever the model has an AR or MA term since, in principle, # the variance could be treated as a free parameter and restricted # This code does not allow this, but it adds consistency with other # packages such as gretl and X12-ARIMA from __future__ import absolute_import from statsmodels.compat.python import string_types, range # for 2to3 with extensions from datetime import datetime import numpy as np from scipy import optimize from scipy.stats import t, norm from scipy.signal import lfilter from numpy import dot, log, zeros, pi from numpy.linalg import inv from statsmodels.tools.decorators import (cache_readonly, resettable_cache) import statsmodels.tsa.base.tsa_model as tsbase import statsmodels.base.wrapper as wrap from statsmodels.regression.linear_model import yule_walker, GLS from statsmodels.tsa.tsatools import (lagmat, add_trend, _ar_transparams, _ar_invtransparams, _ma_transparams, _ma_invtransparams, unintegrate, unintegrate_levels) from statsmodels.tsa.vector_ar import util from statsmodels.tsa.ar_model import AR from statsmodels.tsa.arima_process import arma2ma from statsmodels.tools.numdiff import approx_hess_cs, approx_fprime_cs from statsmodels.tsa.base.datetools import _index_date from statsmodels.tsa.kalmanf import KalmanFilter _armax_notes = """ Notes ----- If exogenous variables are given, then the model that is fit is .. math:: \\phi(L)(y_t - X_t\\beta) = \\theta(L)\epsilon_t where :math:`\\phi` and :math:`\\theta` are polynomials in the lag operator, :math:`L`. This is the regression model with ARMA errors, or ARMAX model. This specification is used, whether or not the model is fit using conditional sum of square or maximum-likelihood, using the `method` argument in :meth:`statsmodels.tsa.arima_model.%(Model)s.fit`. Therefore, for now, `css` and `mle` refer to estimation methods only. This may change for the case of the `css` model in future versions. """ _arma_params = """\ endog : array-like The endogenous variable. order : iterable The (p,q) order of the model for the number of AR parameters, differences, and MA parameters to use. exog : array-like, optional An optional arry of exogenous variables. This should *not* include a constant or trend. You can specify this in the `fit` method.""" _arma_model = "Autoregressive Moving Average ARMA(p,q) Model" _arima_model = "Autoregressive Integrated Moving Average ARIMA(p,d,q) Model" _arima_params = """\ endog : array-like The endogenous variable. order : iterable The (p,d,q) order of the model for the number of AR parameters, differences, and MA parameters to use. exog : array-like, optional An optional arry of exogenous variables. This should *not* include a constant or trend. You can specify this in the `fit` method.""" _predict_notes = """ Notes ----- Use the results predict method instead. """ _results_notes = """ Notes ----- It is recommended to use dates with the time-series models, as the below will probably make clear. However, if ARIMA is used without dates and/or `start` and `end` are given as indices, then these indices are in terms of the *original*, undifferenced series. Ie., given some undifferenced observations:: 1970Q1, 1 1970Q2, 1.5 1970Q3, 1.25 1970Q4, 2.25 1971Q1, 1.2 1971Q2, 4.1 1970Q1 is observation 0 in the original series. However, if we fit an ARIMA(p,1,q) model then we lose this first observation through differencing. Therefore, the first observation we can forecast (if using exact MLE) is index 1. In the differenced series this is index 0, but we refer to it as 1 from the original series. """ _predict = """ %(Model)s model in-sample and out-of-sample prediction Parameters ---------- %(params)s start : int, str, or datetime Zero-indexed observation number at which to start forecasting, ie., the first forecast is start. Can also be a date string to parse or a datetime type. end : int, str, or datetime Zero-indexed observation number at which to end forecasting, ie., the first forecast is start. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out of sample prediction. exog : array-like, optional If the model is an ARMAX and out-of-sample forecasting is requested, exog must be given. Note that you'll need to pass `k_ar` additional lags for any exogenous variables. E.g., if you fit an ARMAX(2, q) model and want to predict 5 steps, you need 7 observations to do this. dynamic : bool, optional The `dynamic` keyword affects in-sample prediction. If dynamic is False, then the in-sample lagged values are used for prediction. If `dynamic` is True, then in-sample forecasts are used in place of lagged dependent variables. The first forecasted value is `start`. %(extra_params)s Returns ------- %(returns)s %(extra_section)s """ _predict_returns = """predict : array The predicted values. """ _arma_predict = _predict % {"Model" : "ARMA", "params" : """ params : array-like The fitted parameters of the model.""", "extra_params" : "", "returns" : _predict_returns, "extra_section" : _predict_notes} _arma_results_predict = _predict % {"Model" : "ARMA", "params" : "", "extra_params" : "", "returns" : _predict_returns, "extra_section" : _results_notes} _arima_predict = _predict % {"Model" : "ARIMA", "params" : """params : array-like The fitted parameters of the model.""", "extra_params" : """typ : str {'linear', 'levels'} - 'linear' : Linear prediction in terms of the differenced endogenous variables. - 'levels' : Predict the levels of the original endogenous variables.\n""", "returns" : _predict_returns, "extra_section" : _predict_notes} _arima_results_predict = _predict % {"Model" : "ARIMA", "params" : "", "extra_params" : """typ : str {'linear', 'levels'} - 'linear' : Linear prediction in terms of the differenced endogenous variables. - 'levels' : Predict the levels of the original endogenous variables.\n""", "returns" : _predict_returns, "extra_section" : _results_notes} _arima_plot_predict_example = """ Examples -------- >>> import statsmodels.api as sm >>> import matplotlib.pyplot as plt >>> import pandas as pd >>> >>> dta = sm.datasets.sunspots.load_pandas().data[['SUNACTIVITY']] >>> dta.index = pd.DatetimeIndex(start='1700', end='2009', freq='A') >>> res = sm.tsa.ARMA(dta, (3, 0)).fit() >>> fig, ax = plt.subplots() >>> ax = dta.ix['1950':].plot(ax=ax) >>> fig = res.plot_predict('1990', '2012', dynamic=True, ax=ax, ... plot_insample=False) >>> plt.show() .. plot:: plots/arma_predict_plot.py """ _plot_predict = (""" Plot forecasts """ + '\n'.join(_predict.split('\n')[2:])) % { "params" : "", "extra_params" : """alpha : float, optional The confidence intervals for the forecasts are (1 - alpha)% plot_insample : bool, optional Whether to plot the in-sample series. Default is True. ax : matplotlib.Axes, optional Existing axes to plot with.""", "returns" : """fig : matplotlib.Figure The plotted Figure instance""", "extra_section" : ('\n' + _arima_plot_predict_example + '\n' + _results_notes) } _arima_plot_predict = (""" Plot forecasts """ + '\n'.join(_predict.split('\n')[2:])) % { "params" : "", "extra_params" : """alpha : float, optional The confidence intervals for the forecasts are (1 - alpha)% plot_insample : bool, optional Whether to plot the in-sample series. Default is True. ax : matplotlib.Axes, optional Existing axes to plot with.""", "returns" : """fig : matplotlib.Figure The plotted Figure instance""", "extra_section" : ('\n' + _arima_plot_predict_example + '\n' + '\n'.join(_results_notes.split('\n')[:3]) + (""" This is hard-coded to only allow plotting of the forecasts in levels. """) + '\n'.join(_results_notes.split('\n')[3:])) } def cumsum_n(x, n): if n: n -= 1 x = np.cumsum(x) return cumsum_n(x, n) else: return x def _check_arima_start(start, k_ar, k_diff, method, dynamic): if start < 0: raise ValueError("The start index %d of the original series " "has been differenced away" % start) elif (dynamic or 'mle' not in method) and start < k_ar: raise ValueError("Start must be >= k_ar for conditional MLE " "or dynamic forecast. Got %d" % start) def _get_predict_out_of_sample(endog, p, q, k_trend, k_exog, start, errors, trendparam, exparams, arparams, maparams, steps, method, exog=None): """ Returns endog, resid, mu of appropriate length for out of sample prediction. """ if q: resid = np.zeros(q) if start and 'mle' in method or (start == p and not start == 0): resid[:q] = errors[start-q:start] elif start: resid[:q] = errors[start-q-p:start-p] else: resid[:q] = errors[-q:] else: resid = None y = endog if k_trend == 1: # use expectation not constant if k_exog > 0: #TODO: technically should only hold for MLE not # conditional model. See #274. # ensure 2-d for conformability if np.ndim(exog) == 1 and k_exog == 1: # have a 1d series of observations -> 2d exog = exog[:, None] elif np.ndim(exog) == 1: # should have a 1d row of exog -> 2d if len(exog) != k_exog: raise ValueError("1d exog given and len(exog) != k_exog") exog = exog[None, :] X = lagmat(np.dot(exog, exparams), p, original='in', trim='both') mu = trendparam * (1 - arparams.sum()) # arparams were reversed in unpack for ease later mu = mu + (np.r_[1, -arparams[::-1]] * X).sum(1)[:, None] else: mu = trendparam * (1 - arparams.sum()) mu = np.array([mu]*steps) elif k_exog > 0: X = np.dot(exog, exparams) #NOTE: you shouldn't have to give in-sample exog! X = lagmat(X, p, original='in', trim='both') mu = (np.r_[1, -arparams[::-1]] * X).sum(1)[:, None] else: mu = np.zeros(steps) endog = np.zeros(p + steps - 1) if p and start: endog[:p] = y[start-p:start] elif p: endog[:p] = y[-p:] return endog, resid, mu def _arma_predict_out_of_sample(params, steps, errors, p, q, k_trend, k_exog, endog, exog=None, start=0, method='mle'): (trendparam, exparams, arparams, maparams) = _unpack_params(params, (p, q), k_trend, k_exog, reverse=True) # print 'params:',params # print 'arparams:',arparams,'maparams:',maparams endog, resid, mu = _get_predict_out_of_sample(endog, p, q, k_trend, k_exog, start, errors, trendparam, exparams, arparams, maparams, steps, method, exog) # print 'mu[-1]:',mu[-1], 'mu[0]:',mu[0] forecast = np.zeros(steps) if steps == 1: if q: return mu[0] + np.dot(arparams, endog[:p]) + np.dot(maparams, resid[:q]), mu[0] else: return mu[0] + np.dot(arparams, endog[:p]), mu[0] if q: i = 0 # if q == 1 else: i = -1 for i in range(min(q, steps - 1)): fcast = (mu[i] + np.dot(arparams, endog[i:i + p]) + np.dot(maparams[:q - i], resid[i:i + q])) forecast[i] = fcast endog[i+p] = fcast for i in range(i + 1, steps - 1): fcast = mu[i] + np.dot(arparams, endog[i:i+p]) forecast[i] = fcast endog[i+p] = fcast #need to do one more without updating endog forecast[-1] = mu[-1] + np.dot(arparams, endog[steps - 1:]) return forecast, mu[-1] #Modified by me, the former is return forecast def _arma_predict_in_sample(start, end, endog, resid, k_ar, method): """ Pre- and in-sample fitting for ARMA. """ if 'mle' in method: fittedvalues = endog - resid # get them all then trim else: fittedvalues = endog[k_ar:] - resid fv_start = start if 'mle' not in method: fv_start -= k_ar # start is in terms of endog index fv_end = min(len(fittedvalues), end + 1) return fittedvalues[fv_start:fv_end] def _validate(start, k_ar, k_diff, dates, method): if isinstance(start, (string_types, datetime)): start = _index_date(start, dates) start -= k_diff if 'mle' not in method and start < k_ar - k_diff: raise ValueError("Start must be >= k_ar for conditional " "MLE or dynamic forecast. Got %s" % start) return start def _unpack_params(params, order, k_trend, k_exog, reverse=False): p, q = order k = k_trend + k_exog maparams = params[k+p:] arparams = params[k:k+p] trend = params[:k_trend] exparams = params[k_trend:k] if reverse: return trend, exparams, arparams[::-1], maparams[::-1] return trend, exparams, arparams, maparams def _unpack_order(order): k_ar, k_ma, k = order k_lags = max(k_ar, k_ma+1) return k_ar, k_ma, order, k_lags def _make_arma_names(data, k_trend, order, exog_names): k_ar, k_ma = order exog_names = exog_names or [] ar_lag_names = util.make_lag_names([data.ynames], k_ar, 0) ar_lag_names = [''.join(('ar.', i)) for i in ar_lag_names] ma_lag_names = util.make_lag_names([data.ynames], k_ma, 0) ma_lag_names = [''.join(('ma.', i)) for i in ma_lag_names] trend_name = util.make_lag_names('', 0, k_trend) exog_names = trend_name + exog_names + ar_lag_names + ma_lag_names return exog_names def _make_arma_exog(endog, exog, trend): k_trend = 1 # overwritten if no constant if exog is None and trend == 'c': # constant only exog = np.ones((len(endog), 1)) elif exog is not None and trend == 'c': # constant plus exogenous exog = add_trend(exog, trend='c', prepend=True) elif exog is not None and trend == 'nc': # make sure it's not holding constant from last run if exog.var() == 0: exog = None k_trend = 0 if trend == 'nc': k_trend = 0 return k_trend, exog def _check_estimable(nobs, n_params): if nobs <= n_params: raise ValueError("Insufficient degrees of freedom to estimate") class ARMA(tsbase.TimeSeriesModel): __doc__ = tsbase._tsa_doc % {"model" : _arma_model, "params" : _arma_params, "extra_params" : "", "extra_sections" : _armax_notes % {"Model" : "ARMA"}} def __init__(self, endog, order, exog=None, dates=None, freq=None, missing='none'): super(ARMA, self).__init__(endog, exog, dates, freq, missing=missing) exog = self.data.exog # get it after it's gone through processing _check_estimable(len(self.endog), sum(order)) self.k_ar = k_ar = order[0] self.k_ma = k_ma = order[1] self.k_lags = max(k_ar, k_ma+1) self.constant = 0 #Added by me if exog is not None: if exog.ndim == 1: exog = exog[:, None] k_exog = exog.shape[1] # number of exog. variables excl. const else: k_exog = 0 self.k_exog = k_exog def _fit_start_params_hr(self, order): """ Get starting parameters for fit. Parameters ---------- order : iterable (p,q,k) - AR lags, MA lags, and number of exogenous variables including the constant. Returns ------- start_params : array A first guess at the starting parameters. Notes ----- If necessary, fits an AR process with the laglength selected according to best BIC. Obtain the residuals. Then fit an ARMA(p,q) model via OLS using these residuals for a first approximation. Uses a separate OLS regression to find the coefficients of exogenous variables. References ---------- Hannan, E.J. and Rissanen, J. 1982. "Recursive estimation of mixed autoregressive-moving average order." `Biometrika`. 69.1. """ p, q, k = order start_params = zeros((p+q+k)) endog = self.endog.copy() # copy because overwritten exog = self.exog if k != 0: ols_params = GLS(endog, exog).fit().params start_params[:k] = ols_params endog -= np.dot(exog, ols_params).squeeze() if q != 0: if p != 0: # make sure we don't run into small data problems in AR fit nobs = len(endog) maxlag = int(round(12*(nobs/100.)**(1/4.))) if maxlag >= nobs: maxlag = nobs - 1 armod = AR(endog).fit(ic='bic', trend='nc', maxlag=maxlag) arcoefs_tmp = armod.params p_tmp = armod.k_ar # it's possible in small samples that optimal lag-order # doesn't leave enough obs. No consistent way to fix. if p_tmp + q >= len(endog): raise ValueError("Proper starting parameters cannot" " be found for this order with this " "number of observations. Use the " "start_params argument.") resid = endog[p_tmp:] - np.dot(lagmat(endog, p_tmp, trim='both'), arcoefs_tmp) if p < p_tmp + q: endog_start = p_tmp + q - p resid_start = 0 else: endog_start = 0 resid_start = p - p_tmp - q lag_endog = lagmat(endog, p, 'both')[endog_start:] lag_resid = lagmat(resid, q, 'both')[resid_start:] # stack ar lags and resids X = np.column_stack((lag_endog, lag_resid)) coefs = GLS(endog[max(p_tmp + q, p):], X).fit().params start_params[k:k+p+q] = coefs else: start_params[k+p:k+p+q] = yule_walker(endog, order=q)[0] if q == 0 and p != 0: arcoefs = yule_walker(endog, order=p)[0] start_params[k:k+p] = arcoefs # check AR coefficients if p and not np.all(np.abs(np.roots(np.r_[1, -start_params[k:k + p]] )) < 1): raise ValueError("The computed initial AR coefficients are not " "stationary\nYou should induce stationarity, " "choose a different model order, or you can\n" "pass your own start_params.") # check MA coefficients elif q and not np.all(np.abs(np.roots(np.r_[1, start_params[k + p:]] )) < 1): return np.zeros(len(start_params)) #modified by me raise ValueError("The computed initial MA coefficients are not " "invertible\nYou should induce invertibility, " "choose a different model order, or you can\n" "pass your own start_params.") # check MA coefficients # print start_params return start_params def _fit_start_params(self, order, method): if method != 'css-mle': # use Hannan-Rissanen to get start params start_params = self._fit_start_params_hr(order) else: # use CSS to get start params func = lambda params: -self.loglike_css(params) #start_params = [.1]*(k_ar+k_ma+k_exog) # different one for k? start_params = self._fit_start_params_hr(order) if self.transparams: start_params = self._invtransparams(start_params) bounds = [(None,)*2]*sum(order) mlefit = optimize.fmin_l_bfgs_b(func, start_params, approx_grad=True, m=12, pgtol=1e-7, factr=1e3, bounds=bounds, iprint=-1) start_params = self._transparams(mlefit[0]) return start_params def score(self, params): """ Compute the score function at params. Notes ----- This is a numerical approximation. """ return approx_fprime_cs(params, self.loglike, args=(False,)) def hessian(self, params): """ Compute the Hessian at params, Notes ----- This is a numerical approximation. """ return approx_hess_cs(params, self.loglike, args=(False,)) def _transparams(self, params): """ Transforms params to induce stationarity/invertability. Reference --------- Jones(1980) """ k_ar, k_ma = self.k_ar, self.k_ma k = self.k_exog + self.k_trend newparams = np.zeros_like(params) # just copy exogenous parameters if k != 0: newparams[:k] = params[:k] # AR Coeffs if k_ar != 0: newparams[k:k+k_ar] = _ar_transparams(params[k:k+k_ar].copy()) # MA Coeffs if k_ma != 0: newparams[k+k_ar:] = _ma_transparams(params[k+k_ar:].copy()) return newparams def _invtransparams(self, start_params): """ Inverse of the Jones reparameterization """ k_ar, k_ma = self.k_ar, self.k_ma k = self.k_exog + self.k_trend newparams = start_params.copy() arcoefs = newparams[k:k+k_ar] macoefs = newparams[k+k_ar:] # AR coeffs if k_ar != 0: newparams[k:k+k_ar] = _ar_invtransparams(arcoefs) # MA coeffs if k_ma != 0: newparams[k+k_ar:k+k_ar+k_ma] = _ma_invtransparams(macoefs) return newparams def _get_predict_start(self, start, dynamic): # do some defaults method = getattr(self, 'method', 'mle') k_ar = getattr(self, 'k_ar', 0) k_diff = getattr(self, 'k_diff', 0) if start is None: if 'mle' in method and not dynamic: start = 0 else: start = k_ar self._set_predict_start_date(start) # else it's done in super elif isinstance(start, int): start = super(ARMA, self)._get_predict_start(start) else: # should be on a date #elif 'mle' not in method or dynamic: # should be on a date start = _validate(start, k_ar, k_diff, self.data.dates, method) start = super(ARMA, self)._get_predict_start(start) _check_arima_start(start, k_ar, k_diff, method, dynamic) return start def _get_predict_end(self, end, dynamic=False): # pass through so predict works for ARIMA and ARMA return super(ARMA, self)._get_predict_end(end) def geterrors(self, params): """ Get the errors of the ARMA process. Parameters ---------- params : array-like The fitted ARMA parameters order : array-like 3 item iterable, with the number of AR, MA, and exogenous parameters, including the trend """ #start = self._get_predict_start(start) # will be an index of a date #end, out_of_sample = self._get_predict_end(end) params = np.asarray(params) k_ar, k_ma = self.k_ar, self.k_ma k = self.k_exog + self.k_trend method = getattr(self, 'method', 'mle') if 'mle' in method: # use KalmanFilter to get errors (y, k, nobs, k_ar, k_ma, k_lags, newparams, Z_mat, m, R_mat, T_mat, paramsdtype) = KalmanFilter._init_kalman_state(params, self) errors = KalmanFilter.geterrors(y, k, k_ar, k_ma, k_lags, nobs, Z_mat, m, R_mat, T_mat, paramsdtype) if isinstance(errors, tuple): errors = errors[0] # non-cython version returns a tuple else: # use scipy.signal.lfilter y = self.endog.copy() k = self.k_exog + self.k_trend if k > 0: y -= dot(self.exog, params[:k]) k_ar = self.k_ar k_ma = self.k_ma (trendparams, exparams, arparams, maparams) = _unpack_params(params, (k_ar, k_ma), self.k_trend, self.k_exog, reverse=False) b, a = np.r_[1, -arparams], np.r_[1, maparams] zi = zeros((max(k_ar, k_ma))) for i in range(k_ar): zi[i] = sum(-b[:i+1][::-1]*y[:i+1]) e = lfilter(b, a, y, zi=zi) errors = e[0][k_ar:] return errors.squeeze() def predict(self, params, start=None, end=None, exog=None, dynamic=False): method = getattr(self, 'method', 'mle') # don't assume fit #params = np.asarray(params) # will return an index of a date start = self._get_predict_start(start, dynamic) end, out_of_sample = self._get_predict_end(end, dynamic) if out_of_sample and (exog is None and self.k_exog > 0): raise ValueError("You must provide exog for ARMAX") endog = self.endog resid = self.geterrors(params) k_ar = self.k_ar if out_of_sample != 0 and self.k_exog > 0: if self.k_exog == 1 and exog.ndim == 1: exog = exog[:, None] # we need the last k_ar exog for the lag-polynomial if self.k_exog > 0 and k_ar > 0: # need the last k_ar exog for the lag-polynomial exog = np.vstack((self.exog[-k_ar:, self.k_trend:], exog)) if dynamic: #TODO: now that predict does dynamic in-sample it should # also return error estimates and confidence intervals # but how? len(endog) is not tot_obs out_of_sample += end - start + 1 pr, ct = _arma_predict_out_of_sample(params, out_of_sample, resid, k_ar, self.k_ma, self.k_trend, self.k_exog, endog, exog, start, method) self.constant = ct return pr predictedvalues = _arma_predict_in_sample(start, end, endog, resid, k_ar, method) if out_of_sample: forecastvalues, ct = _arma_predict_out_of_sample(params, out_of_sample, resid, k_ar, self.k_ma, self.k_trend, self.k_exog, endog, exog, method=method) self.constant = ct predictedvalues = np.r_[predictedvalues, forecastvalues] return predictedvalues predict.__doc__ = _arma_predict def loglike(self, params, set_sigma2=True): """ Compute the log-likelihood for ARMA(p,q) model Notes ----- Likelihood used depends on the method set in fit """ method = self.method if method in ['mle', 'css-mle']: return self.loglike_kalman(params, set_sigma2) elif method == 'css': return self.loglike_css(params, set_sigma2) else: raise ValueError("Method %s not understood" % method) def loglike_kalman(self, params, set_sigma2=True): """ Compute exact loglikelihood for ARMA(p,q) model by the Kalman Filter. """ return KalmanFilter.loglike(params, self, set_sigma2) def loglike_css(self, params, set_sigma2=True): """ Conditional Sum of Squares likelihood function. """ k_ar = self.k_ar k_ma = self.k_ma k = self.k_exog + self.k_trend y = self.endog.copy().astype(params.dtype) nobs = self.nobs # how to handle if empty? if self.transparams: newparams = self._transparams(params) else: newparams = params if k > 0: y -= dot(self.exog, newparams[:k]) # the order of p determines how many zeros errors to set for lfilter b, a = np.r_[1, -newparams[k:k + k_ar]], np.r_[1, newparams[k + k_ar:]] zi = np.zeros((max(k_ar, k_ma)), dtype=params.dtype) for i in range(k_ar): zi[i] = sum(-b[:i + 1][::-1] * y[:i + 1]) errors = lfilter(b, a, y, zi=zi)[0][k_ar:] ssr = np.dot(errors, errors) sigma2 = ssr/nobs if set_sigma2: self.sigma2 = sigma2 llf = -nobs/2.*(log(2*pi) + log(sigma2)) - ssr/(2*sigma2) return llf def fit(self, start_params=None, trend='c', method="css-mle", transparams=True, solver='lbfgs', maxiter=50, full_output=1, disp=5, callback=None, **kwargs): """ Fits ARMA(p,q) model using exact maximum likelihood via Kalman filter. Parameters ---------- start_params : array-like, optional Starting parameters for ARMA(p,q). If None, the default is given by ARMA._fit_start_params. See there for more information. transparams : bool, optional Whehter or not to transform the parameters to ensure stationarity. Uses the transformation suggested in Jones (1980). If False, no checking for stationarity or invertibility is done. method : str {'css-mle','mle','css'} This is the loglikelihood to maximize. If "css-mle", the conditional sum of squares likelihood is maximized and its values are used as starting values for the computation of the exact likelihood via the Kalman filter. If "mle", the exact likelihood is maximized via the Kalman Filter. If "css" the conditional sum of squares likelihood is maximized. All three methods use `start_params` as starting parameters. See above for more information. trend : str {'c','nc'} Whether to include a constant or not. 'c' includes constant, 'nc' no constant. solver : str or None, optional Solver to be used. The default is 'lbfgs' (limited memory Broyden-Fletcher-Goldfarb-Shanno). Other choices are 'bfgs', 'newton' (Newton-Raphson), 'nm' (Nelder-Mead), 'cg' - (conjugate gradient), 'ncg' (non-conjugate gradient), and 'powell'. By default, the limited memory BFGS uses m=12 to approximate the Hessian, projected gradient tolerance of 1e-8 and factr = 1e2. You can change these by using kwargs. maxiter : int, optional The maximum number of function evaluations. Default is 50. tol : float The convergence tolerance. Default is 1e-08. full_output : bool, optional If True, all output from solver will be available in the Results object's mle_retvals attribute. Output is dependent on the solver. See Notes for more information. disp : bool, optional If True, convergence information is printed. For the default l_bfgs_b solver, disp controls the frequency of the output during the iterations. disp < 0 means no output in this case. callback : function, optional Called after each iteration as callback(xk) where xk is the current parameter vector. kwargs See Notes for keyword arguments that can be passed to fit. Returns ------- statsmodels.tsa.arima_model.ARMAResults class See also -------- statsmodels.base.model.LikelihoodModel.fit : for more information on using the solvers. ARMAResults : results class returned by fit Notes ------ If fit by 'mle', it is assumed for the Kalman Filter that the initial unkown state is zero, and that the inital variance is P = dot(inv(identity(m**2)-kron(T,T)),dot(R,R.T).ravel('F')).reshape(r, r, order = 'F') """ k_ar = self.k_ar k_ma = self.k_ma # enforce invertibility self.transparams = transparams endog, exog = self.endog, self.exog k_exog = self.k_exog self.nobs = len(endog) # this is overwritten if method is 'css' # (re)set trend and handle exogenous variables # always pass original exog k_trend, exog = _make_arma_exog(endog, self.exog, trend) # Check has something to estimate if k_ar == 0 and k_ma == 0 and k_trend == 0 and k_exog == 0: raise ValueError("Estimation requires the inclusion of least one " "AR term, MA term, a constant or an exogenous " "variable.") # check again now that we know the trend _check_estimable(len(endog), k_ar + k_ma + k_exog + k_trend) self.k_trend = k_trend self.exog = exog # overwrites original exog from __init__ # (re)set names for this model self.exog_names = _make_arma_names(self.data, k_trend, (k_ar, k_ma), self.exog_names) k = k_trend + k_exog # choose objective function if k_ma == 0 and k_ar == 0: method = "css" # Always CSS when no AR or MA terms self.method = method = method.lower() # adjust nobs for css if method == 'css': self.nobs = len(self.endog) - k_ar if start_params is not None: start_params = np.asarray(start_params) else: # estimate starting parameters start_params = self._fit_start_params((k_ar, k_ma, k), method) if transparams: # transform initial parameters to ensure invertibility start_params = self._invtransparams(start_params) if solver == 'lbfgs': kwargs.setdefault('pgtol', 1e-8) kwargs.setdefault('factr', 1e2) kwargs.setdefault('m', 12) kwargs.setdefault('approx_grad', True) mlefit = super(ARMA, self).fit(start_params, method=solver, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, **kwargs) params = mlefit.params if transparams: # transform parameters back params = self._transparams(params) self.transparams = False # so methods don't expect transf. normalized_cov_params = None # TODO: fix this armafit = ARMAResults(self, params, normalized_cov_params) armafit.mle_retvals = mlefit.mle_retvals armafit.mle_settings = mlefit.mle_settings armafit.mlefit = mlefit return ARMAResultsWrapper(armafit) #NOTE: the length of endog changes when we give a difference to fit #so model methods are not the same on unfit models as fit ones #starting to think that order of model should be put in instantiation... class ARIMA(ARMA): __doc__ = tsbase._tsa_doc % {"model" : _arima_model, "params" : _arima_params, "extra_params" : "", "extra_sections" : _armax_notes % {"Model" : "ARIMA"}} def __new__(cls, endog, order, exog=None, dates=None, freq=None, missing='none'): p, d, q = order if d == 0: # then we just use an ARMA model return ARMA(endog, (p, q), exog, dates, freq, missing) else: mod = super(ARIMA, cls).__new__(cls) mod.__init__(endog, order, exog, dates, freq, missing) return mod def __init__(self, endog, order, exog=None, dates=None, freq=None, missing='none'): p, d, q = order if d > 2: #NOTE: to make more general, need to address the d == 2 stuff # in the predict method raise ValueError("d > 2 is not supported") super(ARIMA, self).__init__(endog, (p, q), exog, dates, freq, missing) self.k_diff = d self._first_unintegrate = unintegrate_levels(self.endog[:d], d) self.endog = np.diff(self.endog, n=d) #NOTE: will check in ARMA but check again since differenced now _check_estimable(len(self.endog), p+q) if exog is not None: self.exog = self.exog[d:] if d == 1: self.data.ynames = 'D.' + self.endog_names else: self.data.ynames = 'D{0:d}.'.format(d) + self.endog_names # what about exog, should we difference it automatically before # super call? def _get_predict_start(self, start, dynamic): """ """ #TODO: remove all these getattr and move order specification to # class constructor k_diff = getattr(self, 'k_diff', 0) method = getattr(self, 'method', 'mle') k_ar = getattr(self, 'k_ar', 0) if start is None: if 'mle' in method and not dynamic: start = 0 else: start = k_ar elif isinstance(start, int): start -= k_diff try: # catch when given an integer outside of dates index start = super(ARIMA, self)._get_predict_start(start, dynamic) except IndexError: raise ValueError("start must be in series. " "got %d" % (start + k_diff)) else: # received a date start = _validate(start, k_ar, k_diff, self.data.dates, method) start = super(ARIMA, self)._get_predict_start(start, dynamic) # reset date for k_diff adjustment self._set_predict_start_date(start + k_diff) return start def _get_predict_end(self, end, dynamic=False): """ Returns last index to be forecast of the differenced array. Handling of inclusiveness should be done in the predict function. """ end, out_of_sample = super(ARIMA, self)._get_predict_end(end, dynamic) if 'mle' not in self.method and not dynamic: end -= self.k_ar return end - self.k_diff, out_of_sample def fit(self, start_params=None, trend='c', method="css-mle", transparams=True, solver='lbfgs', maxiter=50, full_output=1, disp=5, callback=None, **kwargs): """ Fits ARIMA(p,d,q) model by exact maximum likelihood via Kalman filter. Parameters ---------- start_params : array-like, optional Starting parameters for ARMA(p,q). If None, the default is given by ARMA._fit_start_params. See there for more information. transparams : bool, optional Whehter or not to transform the parameters to ensure stationarity. Uses the transformation suggested in Jones (1980). If False, no checking for stationarity or invertibility is done. method : str {'css-mle','mle','css'} This is the loglikelihood to maximize. If "css-mle", the conditional sum of squares likelihood is maximized and its values are used as starting values for the computation of the exact likelihood via the Kalman filter. If "mle", the exact likelihood is maximized via the Kalman Filter. If "css" the conditional sum of squares likelihood is maximized. All three methods use `start_params` as starting parameters. See above for more information. trend : str {'c','nc'} Whether to include a constant or not. 'c' includes constant, 'nc' no constant. solver : str or None, optional Solver to be used. The default is 'lbfgs' (limited memory Broyden-Fletcher-Goldfarb-Shanno). Other choices are 'bfgs', 'newton' (Newton-Raphson), 'nm' (Nelder-Mead), 'cg' - (conjugate gradient), 'ncg' (non-conjugate gradient), and 'powell'. By default, the limited memory BFGS uses m=12 to approximate the Hessian, projected gradient tolerance of 1e-8 and factr = 1e2. You can change these by using kwargs. maxiter : int, optional The maximum number of function evaluations. Default is 50. tol : float The convergence tolerance. Default is 1e-08. full_output : bool, optional If True, all output from solver will be available in the Results object's mle_retvals attribute. Output is dependent on the solver. See Notes for more information. disp : bool, optional If True, convergence information is printed. For the default l_bfgs_b solver, disp controls the frequency of the output during the iterations. disp < 0 means no output in this case. callback : function, optional Called after each iteration as callback(xk) where xk is the current parameter vector. kwargs See Notes for keyword arguments that can be passed to fit. Returns ------- `statsmodels.tsa.arima.ARIMAResults` class See also -------- statsmodels.base.model.LikelihoodModel.fit : for more information on using the solvers. ARIMAResults : results class returned by fit Notes ------ If fit by 'mle', it is assumed for the Kalman Filter that the initial unkown state is zero, and that the inital variance is P = dot(inv(identity(m**2)-kron(T,T)),dot(R,R.T).ravel('F')).reshape(r, r, order = 'F') """ arima_fit = super(ARIMA, self).fit(start_params, trend, method, transparams, solver, maxiter, full_output, disp, callback, **kwargs) normalized_cov_params = None # TODO: fix this? arima_fit = ARIMAResults(self, arima_fit._results.params, normalized_cov_params) arima_fit.k_diff = self.k_diff return ARIMAResultsWrapper(arima_fit) def predict(self, params, start=None, end=None, exog=None, typ='linear', dynamic=False): # go ahead and convert to an index for easier checking if isinstance(start, (string_types, datetime)): start = _index_date(start, self.data.dates) if typ == 'linear': if not dynamic or (start != self.k_ar + self.k_diff and start is not None): return super(ARIMA, self).predict(params, start, end, exog, dynamic) else: # need to assume pre-sample residuals are zero # do this by a hack q = self.k_ma self.k_ma = 0 predictedvalues = super(ARIMA, self).predict(params, start, end, exog, dynamic) self.k_ma = q return predictedvalues elif typ == 'levels': endog = self.data.endog if not dynamic: predict = super(ARIMA, self).predict(params, start, end, dynamic) start = self._get_predict_start(start, dynamic) end, out_of_sample = self._get_predict_end(end) d = self.k_diff if 'mle' in self.method: start += d - 1 # for case where d == 2 end += d - 1 # add each predicted diff to lagged endog if out_of_sample: fv = predict[:-out_of_sample] + endog[start:end+1] if d == 2: #TODO: make a general solution to this fv += np.diff(endog[start - 1:end + 1]) levels = unintegrate_levels(endog[-d:], d) fv = np.r_[fv, unintegrate(predict[-out_of_sample:], levels)[d:]] else: fv = predict + endog[start:end + 1] if d == 2: fv += np.diff(endog[start - 1:end + 1]) else: k_ar = self.k_ar if out_of_sample: fv = (predict[:-out_of_sample] + endog[max(start, self.k_ar-1):end+k_ar+1]) if d == 2: fv += np.diff(endog[start - 1:end + 1]) levels = unintegrate_levels(endog[-d:], d) fv = np.r_[fv, unintegrate(predict[-out_of_sample:], levels)[d:]] else: fv = predict + endog[max(start, k_ar):end+k_ar+1] if d == 2: fv += np.diff(endog[start - 1:end + 1]) else: #IFF we need to use pre-sample values assume pre-sample # residuals are zero, do this by a hack if start == self.k_ar + self.k_diff or start is None: # do the first k_diff+1 separately p = self.k_ar q = self.k_ma k_exog = self.k_exog k_trend = self.k_trend k_diff = self.k_diff (trendparam, exparams, arparams, maparams) = _unpack_params(params, (p, q), k_trend, k_exog, reverse=True) # this is the hack self.k_ma = 0 predict = super(ARIMA, self).predict(params, start, end, exog, dynamic) if not start: start = self._get_predict_start(start, dynamic) start += k_diff self.k_ma = q return endog[start-1] + np.cumsum(predict) else: predict = super(ARIMA, self).predict(params, start, end, exog, dynamic) return endog[start-1] + np.cumsum(predict) return fv else: # pragma : no cover raise ValueError("typ %s not understood" % typ) predict.__doc__ = _arima_predict class ARMAResults(tsbase.TimeSeriesModelResults): """ Class to hold results from fitting an ARMA model. Parameters ---------- model : ARMA instance The fitted model instance params : array Fitted parameters normalized_cov_params : array, optional The normalized variance covariance matrix scale : float, optional Optional argument to scale the variance covariance matrix. Returns -------- **Attributes** aic : float Akaike Information Criterion :math:`-2*llf+2* df_model` where `df_model` includes all AR parameters, MA parameters, constant terms parameters on constant terms and the variance. arparams : array The parameters associated with the AR coefficients in the model. arroots : array The roots of the AR coefficients are the solution to (1 - arparams[0]*z - arparams[1]*z**2 -...- arparams[p-1]*z**k_ar) = 0 Stability requires that the roots in modulus lie outside the unit circle. bic : float Bayes Information Criterion -2*llf + log(nobs)*df_model Where if the model is fit using conditional sum of squares, the number of observations `nobs` does not include the `p` pre-sample observations. bse : array The standard errors of the parameters. These are computed using the numerical Hessian. df_model : array The model degrees of freedom = `k_exog` + `k_trend` + `k_ar` + `k_ma` df_resid : array The residual degrees of freedom = `nobs` - `df_model` fittedvalues : array The predicted values of the model. hqic : float Hannan-Quinn Information Criterion -2*llf + 2*(`df_model`)*log(log(nobs)) Like `bic` if the model is fit using conditional sum of squares then the `k_ar` pre-sample observations are not counted in `nobs`. k_ar : int The number of AR coefficients in the model. k_exog : int The number of exogenous variables included in the model. Does not include the constant. k_ma : int The number of MA coefficients. k_trend : int This is 0 for no constant or 1 if a constant is included. llf : float The value of the log-likelihood function evaluated at `params`. maparams : array The value of the moving average coefficients. maroots : array The roots of the MA coefficients are the solution to (1 + maparams[0]*z + maparams[1]*z**2 + ... + maparams[q-1]*z**q) = 0 Stability requires that the roots in modules lie outside the unit circle. model : ARMA instance A reference to the model that was fit. nobs : float The number of observations used to fit the model. If the model is fit using exact maximum likelihood this is equal to the total number of observations, `n_totobs`. If the model is fit using conditional maximum likelihood this is equal to `n_totobs` - `k_ar`. n_totobs : float The total number of observations for `endog`. This includes all observations, even pre-sample values if the model is fit using `css`. params : array The parameters of the model. The order of variables is the trend coefficients and the `k_exog` exognous coefficients, then the `k_ar` AR coefficients, and finally the `k_ma` MA coefficients. pvalues : array The p-values associated with the t-values of the coefficients. Note that the coefficients are assumed to have a Student's T distribution. resid : array The model residuals. If the model is fit using 'mle' then the residuals are created via the Kalman Filter. If the model is fit using 'css' then the residuals are obtained via `scipy.signal.lfilter` adjusted such that the first `k_ma` residuals are zero. These zero residuals are not returned. scale : float This is currently set to 1.0 and not used by the model or its results. sigma2 : float The variance of the residuals. If the model is fit by 'css', sigma2 = ssr/nobs, where ssr is the sum of squared residuals. If the model is fit by 'mle', then sigma2 = 1/nobs * sum(v**2 / F) where v is the one-step forecast error and F is the forecast error variance. See `nobs` for the difference in definitions depending on the fit. """ _cache = {} #TODO: use this for docstring when we fix nobs issue def __init__(self, model, params, normalized_cov_params=None, scale=1.): super(ARMAResults, self).__init__(model, params, normalized_cov_params, scale) self.sigma2 = model.sigma2 nobs = model.nobs self.nobs = nobs k_exog = model.k_exog self.k_exog = k_exog k_trend = model.k_trend self.k_trend = k_trend k_ar = model.k_ar self.k_ar = k_ar self.n_totobs = len(model.endog) k_ma = model.k_ma self.k_ma = k_ma df_model = k_exog + k_trend + k_ar + k_ma self._ic_df_model = df_model + 1 self.df_model = df_model self.df_resid = self.nobs - df_model self._cache = resettable_cache() self.constant = 0 #Added by me @cache_readonly def arroots(self): return np.roots(np.r_[1, -self.arparams])**-1 @cache_readonly def maroots(self): return np.roots(np.r_[1, self.maparams])**-1 @cache_readonly def arfreq(self): r""" Returns the frequency of the AR roots. This is the solution, x, to z = abs(z)*exp(2j*np.pi*x) where z are the roots. """ z = self.arroots if not z.size: return return np.arctan2(z.imag, z.real) / (2*pi) @cache_readonly def mafreq(self): r""" Returns the frequency of the MA roots. This is the solution, x, to z = abs(z)*exp(2j*np.pi*x) where z are the roots. """ z = self.maroots if not z.size: return return np.arctan2(z.imag, z.real) / (2*pi) @cache_readonly def arparams(self): k = self.k_exog + self.k_trend return self.params[k:k+self.k_ar] @cache_readonly def maparams(self): k = self.k_exog + self.k_trend k_ar = self.k_ar return self.params[k+k_ar:] @cache_readonly def llf(self): return self.model.loglike(self.params) @cache_readonly def bse(self): params = self.params hess = self.model.hessian(params) if len(params) == 1: # can't take an inverse, ensure 1d return np.sqrt(-1./hess[0]) return np.sqrt(np.diag(-inv(hess))) def cov_params(self): # add scale argument? params = self.params hess = self.model.hessian(params) return -inv(hess) @cache_readonly def aic(self): return -2 * self.llf + 2 * self._ic_df_model @cache_readonly def bic(self): nobs = self.nobs return -2 * self.llf + np.log(nobs) * self._ic_df_model @cache_readonly def hqic(self): nobs = self.nobs return -2 * self.llf + 2 * np.log(np.log(nobs)) * self._ic_df_model @cache_readonly def fittedvalues(self): model = self.model endog = model.endog.copy() k_ar = self.k_ar exog = model.exog # this is a copy if exog is not None: if model.method == "css" and k_ar > 0: exog = exog[k_ar:] if model.method == "css" and k_ar > 0: endog = endog[k_ar:] fv = endog - self.resid # add deterministic part back in #k = self.k_exog + self.k_trend #TODO: this needs to be commented out for MLE with constant #if k != 0: # fv += dot(exog, self.params[:k]) return fv @cache_readonly def resid(self): return self.model.geterrors(self.params) @cache_readonly def pvalues(self): #TODO: same for conditional and unconditional? df_resid = self.df_resid return t.sf(np.abs(self.tvalues), df_resid) * 2 def predict(self, start=None, end=None, exog=None, dynamic=False): return self.model.predict(self.params, start, end, exog, dynamic) predict.__doc__ = _arma_results_predict def _forecast_error(self, steps): sigma2 = self.sigma2 ma_rep = arma2ma(np.r_[1, -self.arparams], np.r_[1, self.maparams], nobs=steps) fcasterr = np.sqrt(sigma2 * np.cumsum(ma_rep**2)) return fcasterr def _forecast_conf_int(self, forecast, fcasterr, alpha): const = norm.ppf(1 - alpha / 2.) conf_int = np.c_[forecast - const * fcasterr, forecast + const * fcasterr] return conf_int def forecast(self, steps=1, exog=None, alpha=.05): """ Out-of-sample forecasts Parameters ---------- steps : int The number of out of sample forecasts from the end of the sample. exog : array If the model is an ARMAX, you must provide out of sample values for the exogenous variables. This should not include the constant. alpha : float The confidence intervals for the forecasts are (1 - alpha) % Returns ------- forecast : array Array of out of sample forecasts stderr : array Array of the standard error of the forecasts. conf_int : array 2d array of the confidence interval for the forecast """ if exog is not None: #TODO: make a convenience function for this. we're using the # pattern elsewhere in the codebase exog = np.asarray(exog) if self.k_exog == 1 and exog.ndim == 1: exog = exog[:, None] elif exog.ndim == 1: if len(exog) != self.k_exog: raise ValueError("1d exog given and len(exog) != k_exog") exog = exog[None, :] if exog.shape[0] != steps: raise ValueError("new exog needed for each step") # prepend in-sample exog observations exog = np.vstack((self.model.exog[-self.k_ar:, self.k_trend:], exog)) forecast, ct = _arma_predict_out_of_sample(self.params, steps, self.resid, self.k_ar, self.k_ma, self.k_trend, self.k_exog, self.model.endog, exog, method=self.model.method) self.constant = ct # compute the standard errors fcasterr = self._forecast_error(steps) conf_int = self._forecast_conf_int(forecast, fcasterr, alpha) return forecast, fcasterr, conf_int def summary(self, alpha=.05): """Summarize the Model Parameters ---------- alpha : float, optional Significance level for the confidence intervals. Returns ------- smry : Summary instance This holds the summary table and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary """ from statsmodels.iolib.summary import Summary model = self.model title = model.__class__.__name__ + ' Model Results' method = model.method # get sample TODO: make better sample machinery for estimation k_diff = getattr(self, 'k_diff', 0) if 'mle' in method: start = k_diff else: start = k_diff + self.k_ar if self.data.dates is not None: dates = self.data.dates sample = [dates[start].strftime('%m-%d-%Y')] sample += ['- ' + dates[-1].strftime('%m-%d-%Y')] else: sample = str(start) + ' - ' + str(len(self.data.orig_endog)) k_ar, k_ma = self.k_ar, self.k_ma if not k_diff: order = str((k_ar, k_ma)) else: order = str((k_ar, k_diff, k_ma)) top_left = [('Dep. Variable:', None), ('Model:', [model.__class__.__name__ + order]), ('Method:', [method]), ('Date:', None), ('Time:', None), ('Sample:', [sample[0]]), ('', [sample[1]]) ] top_right = [ ('No. Observations:', [str(len(self.model.endog))]), ('Log Likelihood', ["%#5.3f" % self.llf]), ('S.D. of innovations', ["%#5.3f" % self.sigma2**.5]), ('AIC', ["%#5.3f" % self.aic]), ('BIC', ["%#5.3f" % self.bic]), ('HQIC', ["%#5.3f" % self.hqic])] smry = Summary() smry.add_table_2cols(self, gleft=top_left, gright=top_right, title=title) smry.add_table_params(self, alpha=alpha, use_t=False) # Make the roots table from statsmodels.iolib.table import SimpleTable if k_ma and k_ar: arstubs = ["AR.%d" % i for i in range(1, k_ar + 1)] mastubs = ["MA.%d" % i for i in range(1, k_ma + 1)] stubs = arstubs + mastubs roots = np.r_[self.arroots, self.maroots] freq = np.r_[self.arfreq, self.mafreq] elif k_ma: mastubs = ["MA.%d" % i for i in range(1, k_ma + 1)] stubs = mastubs roots = self.maroots freq = self.mafreq elif k_ar: arstubs = ["AR.%d" % i for i in range(1, k_ar + 1)] stubs = arstubs roots = self.arroots freq = self.arfreq else: # 0,0 model stubs = [] if len(stubs): # not 0, 0 modulus = np.abs(roots) data = np.column_stack((roots.real, roots.imag, modulus, freq)) roots_table = SimpleTable(data, headers=[' Real', ' Imaginary', ' Modulus', ' Frequency'], title="Roots", stubs=stubs, data_fmts=["%17.4f", "%+17.4fj", "%17.4f", "%17.4f"]) smry.tables.append(roots_table) return smry def summary2(self, title=None, alpha=.05, float_format="%.4f"): """Experimental summary function for ARIMA Results Parameters ----------- title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals float_format: string print format for floats in parameters summary Returns ------- smry : Summary instance This holds the summary table and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary2.Summary : class to hold summary results """ from pandas import DataFrame # get sample TODO: make better sample machinery for estimation k_diff = getattr(self, 'k_diff', 0) if 'mle' in self.model.method: start = k_diff else: start = k_diff + self.k_ar if self.data.dates is not None: dates = self.data.dates sample = [dates[start].strftime('%m-%d-%Y')] sample += [dates[-1].strftime('%m-%d-%Y')] else: sample = str(start) + ' - ' + str(len(self.data.orig_endog)) k_ar, k_ma = self.k_ar, self.k_ma # Roots table if k_ma and k_ar: arstubs = ["AR.%d" % i for i in range(1, k_ar + 1)] mastubs = ["MA.%d" % i for i in range(1, k_ma + 1)] stubs = arstubs + mastubs roots = np.r_[self.arroots, self.maroots] freq = np.r_[self.arfreq, self.mafreq] elif k_ma: mastubs = ["MA.%d" % i for i in range(1, k_ma + 1)] stubs = mastubs roots = self.maroots freq = self.mafreq elif k_ar: arstubs = ["AR.%d" % i for i in range(1, k_ar + 1)] stubs = arstubs roots = self.arroots freq = self.arfreq else: # 0, 0 order stubs = [] if len(stubs): modulus = np.abs(roots) data = np.column_stack((roots.real, roots.imag, modulus, freq)) data = DataFrame(data) data.columns = ['Real', 'Imaginary', 'Modulus', 'Frequency'] data.index = stubs # Summary from statsmodels.iolib import summary2 smry = summary2.Summary() # Model info model_info = summary2.summary_model(self) model_info['Method:'] = self.model.method model_info['Sample:'] = sample[0] model_info[' '] = sample[-1] model_info['S.D. of innovations:'] = "%#5.3f" % self.sigma2**.5 model_info['HQIC:'] = "%#5.3f" % self.hqic model_info['No. Observations:'] = str(len(self.model.endog)) # Parameters params = summary2.summary_params(self) smry.add_dict(model_info) smry.add_df(params, float_format=float_format) if len(stubs): smry.add_df(data, float_format="%17.4f") smry.add_title(results=self, title=title) return smry def plot_predict(self, start=None, end=None, exog=None, dynamic=False, alpha=.05, plot_insample=True, ax=None): from statsmodels.graphics.utils import _import_mpl, create_mpl_ax _ = _import_mpl() fig, ax = create_mpl_ax(ax) # use predict so you set dates forecast = self.predict(start, end, exog, dynamic) # doing this twice. just add a plot keyword to predict? start = self.model._get_predict_start(start, dynamic=False) end, out_of_sample = self.model._get_predict_end(end, dynamic=False) if out_of_sample: steps = out_of_sample fc_error = self._forecast_error(steps) conf_int = self._forecast_conf_int(forecast[-steps:], fc_error, alpha) if hasattr(self.data, "predict_dates"): from pandas import TimeSeries forecast = TimeSeries(forecast, index=self.data.predict_dates) ax = forecast.plot(ax=ax, label='forecast') else: ax.plot(forecast) x = ax.get_lines()[-1].get_xdata() if out_of_sample: label = "{0:.0%} confidence interval".format(1 - alpha) ax.fill_between(x[-out_of_sample:], conf_int[:, 0], conf_int[:, 1], color='gray', alpha=.5, label=label) if plot_insample: ax.plot(x[:end + 1 - start], self.model.endog[start:end+1], label=self.model.endog_names) ax.legend(loc='best') return fig plot_predict.__doc__ = _plot_predict class ARMAResultsWrapper(wrap.ResultsWrapper): _attrs = {} _wrap_attrs = wrap.union_dicts(tsbase.TimeSeriesResultsWrapper._wrap_attrs, _attrs) _methods = {} _wrap_methods = wrap.union_dicts(tsbase.TimeSeriesResultsWrapper._wrap_methods, _methods) wrap.populate_wrapper(ARMAResultsWrapper, ARMAResults) class ARIMAResults(ARMAResults): def predict(self, start=None, end=None, exog=None, typ='linear', dynamic=False): return self.model.predict(self.params, start, end, exog, typ, dynamic) predict.__doc__ = _arima_results_predict def _forecast_error(self, steps): sigma2 = self.sigma2 ma_rep = arma2ma(np.r_[1, -self.arparams], np.r_[1, self.maparams], nobs=steps) fcerr = np.sqrt(np.cumsum(cumsum_n(ma_rep, self.k_diff)**2)*sigma2) return fcerr def _forecast_conf_int(self, forecast, fcerr, alpha): const = norm.ppf(1 - alpha/2.) conf_int = np.c_[forecast - const*fcerr, forecast + const*fcerr] return conf_int def forecast(self, steps=1, exog=None, alpha=.05): """ Out-of-sample forecasts Parameters ---------- steps : int The number of out of sample forecasts from the end of the sample. exog : array If the model is an ARIMAX, you must provide out of sample values for the exogenous variables. This should not include the constant. alpha : float The confidence intervals for the forecasts are (1 - alpha) % Returns ------- forecast : array Array of out of sample forecasts stderr : array Array of the standard error of the forecasts. conf_int : array 2d array of the confidence interval for the forecast Notes ----- Prediction is done in the levels of the original endogenous variable. If you would like prediction of differences in levels use `predict`. """ if exog is not None: if self.k_exog == 1 and exog.ndim == 1: exog = exog[:, None] if exog.shape[0] != steps: raise ValueError("new exog needed for each step") # prepend in-sample exog observations exog = np.vstack((self.model.exog[-self.k_ar:, self.k_trend:], exog)) forecast, ct = _arma_predict_out_of_sample(self.params, steps, self.resid, self.k_ar, self.k_ma, self.k_trend, self.k_exog, self.model.endog, exog, method=self.model.method) #self.constant = ct d = self.k_diff endog = self.model.data.endog[-d:] forecast = unintegrate(forecast, unintegrate_levels(endog, d))[d:] # get forecast errors fcerr = self._forecast_error(steps) conf_int = self._forecast_conf_int(forecast, fcerr, alpha) return forecast, fcerr, conf_int def plot_predict(self, start=None, end=None, exog=None, dynamic=False, alpha=.05, plot_insample=True, ax=None): from statsmodels.graphics.utils import _import_mpl, create_mpl_ax _ = _import_mpl() fig, ax = create_mpl_ax(ax) # use predict so you set dates forecast = self.predict(start, end, exog, 'levels', dynamic) # doing this twice. just add a plot keyword to predict? start = self.model._get_predict_start(start, dynamic=dynamic) end, out_of_sample = self.model._get_predict_end(end, dynamic=dynamic) if out_of_sample: steps = out_of_sample fc_error = self._forecast_error(steps) conf_int = self._forecast_conf_int(forecast[-steps:], fc_error, alpha) if hasattr(self.data, "predict_dates"): from pandas import TimeSeries forecast = TimeSeries(forecast, index=self.data.predict_dates) ax = forecast.plot(ax=ax, label='forecast') else: ax.plot(forecast) x = ax.get_lines()[-1].get_xdata() if out_of_sample: label = "{0:.0%} confidence interval".format(1 - alpha) ax.fill_between(x[-out_of_sample:], conf_int[:, 0], conf_int[:, 1], color='gray', alpha=.5, label=label) if plot_insample: import re k_diff = self.k_diff label = re.sub("D\d*\.", "", self.model.endog_names) levels = unintegrate(self.model.endog, self.model._first_unintegrate) ax.plot(x[:end + 1 - start], levels[start + k_diff:end + k_diff + 1], label=label) ax.legend(loc='best') return fig plot_predict.__doc__ = _arima_plot_predict class ARIMAResultsWrapper(ARMAResultsWrapper): pass wrap.populate_wrapper(ARIMAResultsWrapper, ARIMAResults) if __name__ == "__main__": import statsmodels.api as sm # simulate arma process from statsmodels.tsa.arima_process import arma_generate_sample y = arma_generate_sample([1., -.75], [1., .25], nsample=1000) arma = ARMA(y) res = arma.fit(trend='nc', order=(1, 1)) np.random.seed(12345) y_arma22 = arma_generate_sample([1., -.85, .35], [1, .25, -.9], nsample=1000) arma22 = ARMA(y_arma22) res22 = arma22.fit(trend='nc', order=(2, 2)) # test CSS arma22_css = ARMA(y_arma22) res22css = arma22_css.fit(trend='nc', order=(2, 2), method='css') data = sm.datasets.sunspots.load() ar = ARMA(data.endog) resar = ar.fit(trend='nc', order=(9, 0)) y_arma31 = arma_generate_sample([1, -.75, -.35, .25], [.1], nsample=1000) arma31css = ARMA(y_arma31) res31css = arma31css.fit(order=(3, 1), method="css", trend="nc", transparams=True) y_arma13 = arma_generate_sample([1., -.75], [1, .25, -.5, .8], nsample=1000) arma13css = ARMA(y_arma13) res13css = arma13css.fit(order=(1, 3), method='css', trend='nc') # check css for p < q and q < p y_arma41 = arma_generate_sample([1., -.75, .35, .25, -.3], [1, -.35], nsample=1000) arma41css = ARMA(y_arma41) res41css = arma41css.fit(order=(4, 1), trend='nc', method='css') y_arma14 = arma_generate_sample([1, -.25], [1., -.75, .35, .25, -.3], nsample=1000) arma14css = ARMA(y_arma14) res14css = arma14css.fit(order=(4, 1), trend='nc', method='css') # ARIMA Model from statsmodels.datasets import webuse dta = webuse('wpi1') wpi = dta['wpi'] mod = ARIMA(wpi, (1, 1, 1)).fit()
看完上述內(nèi)容,是不是對(duì)用python進(jìn)行時(shí)間序列分析的方法有進(jìn)一步的了解,如果還想學(xué)習(xí)更多內(nèi)容,歡迎關(guān)注億速云行業(yè)資訊頻道。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請(qǐng)聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。