溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

Hive實際操作用法介紹

發(fā)布時間:2021-08-31 11:34:24 來源:億速云 閱讀:126 作者:chen 欄目:互聯(lián)網(wǎng)科技

這篇文章主要介紹“Hive實際操作用法介紹”,在日常操作中,相信很多人在Hive實際操作用法介紹問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對大家解答”Hive實際操作用法介紹”的疑惑有所幫助!接下來,請跟著小編一起來學(xué)習(xí)吧!

Hive表類型測試

內(nèi)部表

數(shù)據(jù)準(zhǔn)備,先在HDFS上準(zhǔn)備文本文件,逗號分割,并上傳到/test目錄,然后在Hive里創(chuàng)建表,表名和文件名要相同。

$ cat /tmp/table_test.csv 
1,user1,1000
2,user2,2000
3,user3,3000
4,user4,4000
5,user5,5000

Hive創(chuàng)建表

hive> CREATE TABLE table_test (
  id int,
  name string,
  value INT
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' ;

前半部分跟我們使用SQL語法差不多,后面的設(shè)置表示我們以’,’為分隔符導(dǎo)入數(shù)據(jù)。

Hive加載HDFS數(shù)據(jù)

$ hive -e 'load data local inpath '/tmp/table_test.csv' into table db_test.table_test'
Loading data to table db_test.table_test
OK
Time taken: 0.148 seconds

同一個文件可以多次加載(追加數(shù)據(jù)),同時會在HDFS數(shù)據(jù)目錄下多生成一個文件。另外這里加載數(shù)據(jù)local關(guān)鍵字表示我們從本地文件加載,如果不加local表示從HDFS中加載數(shù)據(jù)。

Hive查看數(shù)據(jù)

hive> select * from table_test;
OK
1       user1   1000
2       user2   2000
3       user3   3000
4       user4   4000
5       user5   5000
Time taken: 0.058 seconds, Fetched: 5 row(s)

你也可以使用select id from table_test,但是注意在Hive中除了select * from table之外可以使用全表掃描之外,其余任何查詢都需要走MapRedure。

查看HDFS數(shù)據(jù)文件

[hadoop@hadoop-nn ~]$ hdfs dfs -ls /user/hive/warehouse/db_test.db/table_test/
Found 1 items
-rwxrwxrwx   2 root supergroup         65 2017-06-15 22:27 /user/hive/warehouse/db_test.db/table_test/table_test.csv

注意文件權(quán)限屬主為root,這是因為我是在root用戶下進入hive的,一般在Hadoop用戶下進入hive命令行進行創(chuàng)建表。

從HDFS加載數(shù)據(jù)到Hive,先上傳數(shù)據(jù)到HDFS集群中

[hadoop@hadoop-nn ~]$ hdfs dfs -mkdir /test
[hadoop@hadoop-nn ~]$ hdfs dfs -put /tmp/table_test.csv /test/table_test.csv

創(chuàng)建表

[hadoop@hadoop-nn ~]$ hive
hive> CREATE TABLE hdfs_table (
  id int,
  name string,
  value INT
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' ;

加載數(shù)據(jù)

hive> LOAD DATA INPATH '/test/table_test.csv' OVERWRITE INTO TABLE db_test.hdfs_table;
Loading data to table db_test.hdfs_table
OK
Time taken: 0.343 seconds
hive> select * from db_test.hdfs_table;
OK
1       user1   1000
2       user2   2000
3       user3   3000
4       user4   4000
5       user5   5000
Time taken: 0.757 seconds, Fetched: 5 row(s)

注意,如果從HDFS加載數(shù)據(jù)到Hive后,原有的HDFS的數(shù)據(jù)文件就不會存在了。

[hadoop@hadoop-nn ~]$ hdfs dfs -ls /test/table_test.csv
ls: `/test/table_test.csv': No such file or directory

查看HDFS數(shù)據(jù)文件

[hadoop@hadoop-nn ~]$ hdfs dfs -ls /user/hive/warehouse/db_test.db/hdfs_table/
Found 1 items
-rwxrwxrwx   2 hadoop supergroup         65 2017-06-15 22:54 /user/hive/warehouse/db_test.db/hdfs_table/table_test.csv

再次上傳一個文件到對應(yīng)表的目錄(/user/hive/warehouse/db_test.db/hdfs_table)下

[hadoop@hadoop-nn ~]$ cat /tmp/table_test.csv 
6,user6,6000
[hadoop@hadoop-nn ~]$ hdfs dfs -put /tmp/table_test.csv /user/hive/warehouse/db_test.db/hdfs_table/table_test_20170616.csv

再次查看Hive表

hive> select * from db_test.hdfs_table;
OK
1       user1   1000
2       user2   2000
3       user3   3000
4       user4   4000
5       user5   5000
6       user6   6000
Time taken: 0.053 seconds, Fetched: 6 row(s)

可以看到,我們追加的一個表信息也顯示出來了。

分區(qū)表

創(chuàng)建分區(qū)表時,需要給定一個分區(qū)字段,這個分區(qū)字段可以是已經(jīng)存在的,也可以是不存在(如果不存在創(chuàng)建表時會自動添加)。Hive分區(qū)概念跟MySQL分區(qū)差不多。下面創(chuàng)建一個以月為分區(qū)的分區(qū)表。

CREATE TABLE par_table (
  id int,
  name string,
  value INT
) partitioned by (day int) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';

查看表信息

hive> desc par_table;
OK
id                      int                                         
name                    string                                      
value                   int                                         
day                     int                                         
                 
# Partition Information          
# col_name              data_type               comment             
                 
day                     int                                         
Time taken: 0.023 seconds, Fetched: 9 row(s)

加載數(shù)據(jù)到Hive分區(qū)表中,需要指定對應(yīng)的分區(qū)表進行數(shù)據(jù)加載

hive> LOAD DATA LOCAL INPATH '/tmp/table_test.csv' OVERWRITE INTO TABLE db_test.par_table PARTITION (day='22');
Loading data to table db_test.par_table partition (day=22)
OK
Time taken: 0.267 seconds
 
hive> LOAD DATA LOCAL INPATH '/tmp/table_test.csv' OVERWRITE INTO TABLE db_test.par_table PARTITION (day='23');
Loading data to table db_test.par_table partition (day=23)
OK
Time taken: 0.216 seconds

查看HDFS數(shù)據(jù)文件展示樣式

[hadoop@hadoop-nn ~]$ hdfs dfs -ls /user/hive/warehouse/db_test.db/par_table/
Found 1 items
drwxrwxrwx   - hadoop supergroup          0 2017-06-16 01:12 /user/hive/warehouse/db_test.db/par_table/day=22
drwxrwxrwx   - hadoop supergroup          0 2017-06-16 01:12 /user/hive/warehouse/db_test.db/par_table/day=23

可以看到多了對應(yīng)的分區(qū)目錄了。

查詢數(shù)據(jù),查詢時有點不太一樣,如果給定一個where條件指定分區(qū)字段(也就是根據(jù)查詢字段來進行分區(qū)),這樣就只會查詢這個分區(qū)的內(nèi)容,不需要加載所有表。如果查詢字段不是分區(qū)字段,那么就需要掃描所有的分區(qū)了。如下兩個示例:

hive> select * from db_test.par_table;
OK
6       user6   6000    22
6       user6   6000    23
Time taken: 0.054 seconds, Fetched: 2 row(s)
 
hive> select * from db_test.par_table where day=22;
OK
6       user6   6000    22
Time taken: 0.068 seconds, Fetched: 1 row(s)

外部表

Hive支持外部表,外部表跟內(nèi)部表和分區(qū)表不同。只需要在HDFS中有了對應(yīng)的文件,然后在Hive就可以創(chuàng)建一個表并指定對應(yīng)的目錄就可以直接查數(shù)據(jù)了,而不需要執(zhí)行數(shù)據(jù)加載任務(wù)。下面來測試看看:

先在HDFS中創(chuàng)建目錄和上傳文件:

[hadoop@hadoop-nn ~]$ hdfs dfs -mkdir -p /hive/external
[hadoop@hadoop-nn ~]$ hdfs dfs -put /tmp/table_test.csv /hive/external/ext_table.csv

然后在Hive中直接創(chuàng)建表:

CREATE EXTERNAL TABLE ext_table (
  id int,
  name string,
  value INT
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' LOCATION '/hive/external';

此時,直接查詢此表,不需要加載數(shù)據(jù)了

hive> select * from ext_table;
OK
6       user6   6000
Time taken: 0.042 seconds, Fetched: 1 row(s)

Hive還支持桶表,這里就不說了,很少用,有興趣自行查看資料。

最后來一個MapReduce處理Hive的過程

hive> select count(*) from table_test;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = hadoop_20170616021047_9c0dc1bf-383f-49ad-83e2-e2e5dfdcb20c
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=In order to set a constant number of reducers:
  set mapreduce.job.reduces=Starting Job = job_1497424827481_0004, Tracking URL = http://master:8088/proxy/application_1497424827481_0004/
Kill Command = /usr/local/hadoop/bin/hadoop job  -kill job_1497424827481_0004
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2017-06-16 02:10:52,914 Stage-1 map = 0%,  reduce = 0%
2017-06-16 02:10:57,062 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.11 sec
2017-06-16 02:11:02,204 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 2.53 sec
MapReduce Total cumulative CPU time: 2 seconds 530 msec
Ended Job = job_1497424827481_0004
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 2.53 sec   HDFS Read: 7980 HDFS Write: 102 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 530 msec
OK
10
Time taken: 15.254 seconds, Fetched: 1 row(s)

可以好好看一下處理過程,由于是測試環(huán)境所以MP時間很久。

視圖

另外Hive也支持視圖,使用非常簡單,如下配置:

hive> create view view_test as select * from table_test;
OK
Time taken: 0.054 seconds
 
hive> select * from view_test;
OK
d1      user1   1000
d1      user2   2000
d1      user3   3000
d2      user4   4000
d2      user5   5000
Time taken: 0.057 seconds, Fetched: 5 row(s)

Hive元數(shù)據(jù)信息

然后我們來查看一下Hive元數(shù)據(jù)表信息,在MySQL的hive庫下的DBS表中存儲Hive創(chuàng)建的庫信息:

mysql> select * from DBS;
+-------+-----------------------+---------------------------------------------------+---------+------------+------------+
| DB_ID | DESC                  | DB_LOCATION_URI                                   | NAME    | OWNER_NAME | OWNER_TYPE |
+-------+-----------------------+---------------------------------------------------+---------+------------+------------+
|     1 | Default Hive database | hdfs://master:8020/user/hive/warehouse            | default | public     | ROLE       |
|     6 | NULL                  | hdfs://master:8020/user/hive/warehouse/db_test.db | db_test | hadoop     | USER       |
+-------+-----------------------+---------------------------------------------------+---------+------------+------------+
2 rows in set (0.00 sec)
DB_ID:庫ID,具有唯一性。
DESC:庫描述信息。
DB_LOCATION_URI:庫在HDFS的URI地址。
NAME:庫名稱。
OWNER_NAME:庫的所有者,用什么系統(tǒng)用戶登錄Hive創(chuàng)建的,其所有者就是誰,一般要在Hadoop用戶下登錄Hive。
OWNER_TYPE:庫的所有者類型。
在hive庫下的TBLS表中存儲我們創(chuàng)建的表的元數(shù)據(jù)信息:
mysql> select * from TBLS;
+--------+-------------+-------+------------------+--------+-----------+-------+------------+----------------+--------------------+--------------------+
| TBL_ID | CREATE_TIME | DB_ID | LAST_ACCESS_TIME | OWNER  | RETENTION | SD_ID | TBL_NAME   | TBL_TYPE       | VIEW_EXPANDED_TEXT | VIEW_ORIGINAL_TEXT |
+--------+-------------+-------+------------------+--------+-----------+-------+------------+----------------+--------------------+--------------------+
|     11 |  1497579800 |     6 |                0 | root   |         0 |    11 | table_test | MANAGED_TABLE  | NULL               | NULL               |
|     16 |  1497581548 |     6 |                0 | hadoop |         0 |    16 | hdfs_table | MANAGED_TABLE  | NULL               | NULL               |
|     26 |  1497584489 |     6 |                0 | hadoop |         0 |    26 | par_table  | MANAGED_TABLE  | NULL               | NULL               |
|     28 |  1497591914 |     6 |                0 | hadoop |         0 |    31 | ext_table  | EXTERNAL_TABLE | NULL               | NULL               |
+--------+-------------+-------+------------------+--------+-----------+-------+------------+----------------+--------------------+--------------------+
4 rows in set (0.00 sec)
解釋幾個重要參數(shù):
TBL_ID:表ID,具有唯一性。
CREATE_TIME:表創(chuàng)建時間。
DB_ID:所屬庫的ID。
LAST_ACCESS_TIME:最后一次訪問時間。
OWNER:表的所有者,用什么系統(tǒng)用戶登錄Hive創(chuàng)建的,其所有者就是誰,一般要在Hadoop用戶下登錄Hive。
TBL_NAME:表名稱。
TBL_TYPE:表類型,MANAGED_TABLE表示受托管的表(如內(nèi)部表、分區(qū)表、桶表),EXTERNAL_TABLE表示外部表,兩個有個很大的區(qū)別就是受托管的表,當(dāng)你執(zhí)行DROP TABLE動作時,會把Hive元數(shù)據(jù)信息連同HDFS數(shù)據(jù)也一同刪除。而外部表執(zhí)行DROP TABLE時不會刪除HDFS的數(shù)據(jù),只是把元數(shù)據(jù)信息刪除了。

到此,關(guān)于“Hive實際操作用法介紹”的學(xué)習(xí)就結(jié)束了,希望能夠解決大家的疑惑。理論與實踐的搭配能更好的幫助大家學(xué)習(xí),快去試試吧!若想繼續(xù)學(xué)習(xí)更多相關(guān)知識,請繼續(xù)關(guān)注億速云網(wǎng)站,小編會繼續(xù)努力為大家?guī)砀鄬嵱玫奈恼拢?/p>

向AI問一下細節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI