溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

深入淺析Android中的消息機(jī)制

發(fā)布時(shí)間:2020-11-21 15:28:33 來源:億速云 閱讀:137 作者:Leah 欄目:移動(dòng)開發(fā)

本篇文章給大家分享的是有關(guān)深入淺析Android中的消息機(jī)制,小編覺得挺實(shí)用的,因此分享給大家學(xué)習(xí),希望大家閱讀完這篇文章后可以有所收獲,話不多說,跟著小編一起來看看吧。

一、簡(jiǎn)介

Android的消息機(jī)制主要是指Handler的運(yùn)行機(jī)制,那么什么是Handler的運(yùn)行機(jī)制那?通俗的來講就是,使用Handler將子線程的Message放入主線程的Messagequeue中,在主線程使用。

二、學(xué)習(xí)內(nèi)容

學(xué)習(xí)Android的消息機(jī)制,我們需要先了解如下內(nèi)容。

  1. 消息的表示:Message
  2. 消息隊(duì)列:MessageQueue
  3. 消息循環(huán),用于循環(huán)取出消息進(jìn)行處理:Looper
  4. 消息處理,消息循環(huán)從消息隊(duì)列中取出消息后要對(duì)消息進(jìn)行處理:Handler

平常我們接觸的大多是Handler和Message,今天就讓我們來深入的了解一下他們。

三、代碼詳解

一般而言我們都是這樣使用Handler的

xxHandler.sendEmptyMessage(xxx);

當(dāng)然還有其他表示方法,但我們深入到源代碼中,會(huì)發(fā)現(xiàn),他們最終都調(diào)用了一個(gè)方法

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
 MessageQueue queue = mQueue;
 if (queue == null) {
  RuntimeException e = new RuntimeException(
   this + " sendMessageAtTime() called with no mQueue");
  Log.w("Looper", e.getMessage(), e);
  return false;
 }
 return enqueueMessage(queue, msg, uptimeMillis);
 }

sendMessageAtTime()方法,但這依然不是結(jié)束,我們可以看到最后一句enqueueMessage(queue, msg, uptimeMillis);按字面意思來說插入一條消息,那么疑問來了,消息插入了哪里。

boolean enqueueMessage(Message msg, long when) {
 if (msg.target == null) {
  throw new IllegalArgumentException("Message must have a target.");
 }
 if (msg.isInUse()) {
  throw new IllegalStateException(msg + " This message is already in use.");
 }
 synchronized (this) {
  if (mQuitting) {
  IllegalStateException e = new IllegalStateException(
   msg.target + " sending message to a Handler on a dead thread");
  Log.w(TAG, e.getMessage(), e);
  msg.recycle();
  return false;
  }
  msg.markInUse();
  msg.when = when;
  Message p = mMessages;
  boolean needWake;
  if (p == null || when == 0 || when < p.when) {
  // New head, wake up the event queue if blocked.
  msg.next = p;
  mMessages = msg;
  needWake = mBlocked;
  } else {
  // Inserted within the middle of the queue. Usually we don't have to wake
  // up the event queue unless there is a barrier at the head of the queue
  // and the message is the earliest asynchronous message in the queue.
  needWake = mBlocked && p.target == null && msg.isAsynchronous();
  Message prev;
  for (;;) {
   prev = p;
   p = p.next;
   if (p == null || when < p.when) {
   break;
   }
   if (needWake && p.isAsynchronous()) {
   needWake = false;
   }
  }
  msg.next = p; // invariant: p == prev.next
  prev.next = msg;
  }
  // We can assume mPtr != 0 because mQuitting is false.
  if (needWake) {
  nativeWake(mPtr);
  }
 }
 return true;
 }

進(jìn)入源代碼,我們發(fā)現(xiàn),我們需要了解一個(gè)新類Messagequeue。

雖然我們一般把他叫做消息隊(duì)列,但是通過研究,我們發(fā)下,它實(shí)際上是一種單鏈表的數(shù)據(jù)結(jié)構(gòu),而我們對(duì)它的操作主要是插入和讀取。

看代碼33-44,學(xué)過數(shù)據(jù)結(jié)構(gòu),我們可以輕松的看出,這是一個(gè)單鏈表的插入末尾的操作。

這樣就明白了,我們send方法實(shí)質(zhì)就是向Messagequeue中插入這么一條消息,那么另一個(gè)問題隨之而來,我們?cè)撊绾翁幚磉@條消息。

處理消息我們離不開一個(gè)重要的,Looper。那么它在消息機(jī)制中又有什么樣的作用那?

Looper扮演著消息循環(huán)的角色,具體而言它會(huì)不停的從MessageQueue中查看是否有新消息如果有新消息就會(huì)立刻處理,否則就已知阻塞在那里,現(xiàn)在讓我們來看一下他的代碼實(shí)現(xiàn)。

首先是構(gòu)造方法

 private Looper(boolean quitAllowed) {
 mQueue = new MessageQueue(quitAllowed);
 mThread = Thread.currentThread();
 }

可以發(fā)現(xiàn),它將當(dāng)前線程對(duì)象保存了起來。我們繼續(xù)

Looper在新線程創(chuàng)建過程中有兩個(gè)重要的方法looper.prepare() looper.loop

new Thread(){
 public void run(){
 Looper.prepare();
 Handler handler = new Handler();
 Looper.loop();
 }
}.start();

我們先來看prepare()方法

private static void prepare(boolean quitAllowed) {
 if (sThreadLocal.get() != null) {
  throw new RuntimeException("Only one Looper may be created per thread");
 }
 sThreadLocal.set(new Looper(quitAllowed));
 }

咦,我們可以看到這里面又有一個(gè)ThreadLocal類,我們?cè)谶@簡(jiǎn)單了解一下,他的特性,set(),get()方法。

首先ThreadLocal是一個(gè)線程內(nèi)部的數(shù)據(jù)存儲(chǔ)類,通過它可以在指定的線程中存儲(chǔ)數(shù)據(jù),數(shù)據(jù)存儲(chǔ)后,只有在制定線程中可以獲取存儲(chǔ)的數(shù)據(jù),對(duì)于其他線程而言則無(wú)法獲取到數(shù)據(jù)。簡(jiǎn)單的來說。套用一個(gè)列子:

private ThreadLocal<Boolean> mBooleanThreadLocal = new  ThreadLocal<Boolean>();//
mBooleanThreadLocal.set(true);
Log.d(TAH,"Threadmain"+mBooleanThreadLocal.get());
new Thread("Thread#1"){
 public void run(){
 mBooleanThreadLocal.set(false);
 Log.d(TAH,"Thread#1"+mBooleanThreadLocal.get());
 }; 
}.start();
new Thread("Thread#2"){
 public void run(){
 Log.d(TAH,"Thread#2"+mBooleanThreadLocal.get());
 }; 
}.start();

上面的代碼運(yùn)行后,我們會(huì)發(fā)現(xiàn),每一個(gè)線程的值都是不同的,即使他們?cè)L問的是同意個(gè)ThreadLocal對(duì)象。

那么我們接下來會(huì)在之后分析源碼,為什么他會(huì)不一樣?,F(xiàn)在我們跳回prepare()方法那一步,loop()方法源碼貼上

public static void loop() {
 final Looper me = myLooper();
 if (me == null) {
  throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
 }
 final MessageQueue queue = me.mQueue;
 // Make sure the identity of this thread is that of the local process,
 // and keep track of what that identity token actually is.
 Binder.clearCallingIdentity();
 final long ident = Binder.clearCallingIdentity();
 for (;;) {
  Message msg = queue.next(); // might block
  if (msg == null) {
  // No message indicates that the message queue is quitting.
  return;
  }
  // This must be in a local variable, in case a UI event sets the logger
  Printer logging = me.mLogging;
  if (logging != null) {
  logging.println(">>>>> Dispatching to " + msg.target + " " +
   msg.callback + ": " + msg.what);
  }
  msg.target.dispatchMessage(msg);
  if (logging != null) {
  logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
  }
  // Make sure that during the course of dispatching the
  // identity of the thread wasn't corrupted.
  final long newIdent = Binder.clearCallingIdentity();
  if (ident != newIdent) {
  Log.wtf(TAG, "Thread identity changed from 0x"
   + Long.toHexString(ident) + " to 0x"
   + Long.toHexString(newIdent) + " while dispatching to "
   + msg.target.getClass().getName() + " "
   + msg.callback + " what=" + msg.what);
  }
  msg.recycleUnchecked();
 }
 }

首先loop()方法,獲得這個(gè)線程的Looper,若沒有拋出異常。再獲得新建的Messagequeue,在這里我們有必要補(bǔ)充一下Messagequeue的next()方法。

Message next() {
 // Return here if the message loop has already quit and been disposed.
 // This can happen if the application tries to restart a looper after quit
 // which is not supported.
 final long ptr = mPtr;
 if (ptr == 0) {
  return null;
 }
 int pendingIdleHandlerCount = -1; // -1 only during first iteration
 int nextPollTimeoutMillis = 0;
 for (;;) {
  if (nextPollTimeoutMillis != 0) {
  Binder.flushPendingCommands();
  }
  nativePollOnce(ptr, nextPollTimeoutMillis);
  synchronized (this) {
  // Try to retrieve the next message. Return if found.
  final long now = SystemClock.uptimeMillis();
  Message prevMsg = null;
  Message msg = mMessages;
  if (msg != null && msg.target == null) {
   // Stalled by a barrier. Find the next asynchronous message in the queue.
   do {
   prevMsg = msg;
   msg = msg.next;
   } while (msg != null && !msg.isAsynchronous());
  }
  if (msg != null) {
   if (now < msg.when) {
   // Next message is not ready. Set a timeout to wake up when it is ready.
   nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
   } else {
   // Got a message.
   mBlocked = false;
   if (prevMsg != null) {
    prevMsg.next = msg.next;
   } else {
    mMessages = msg.next;
   }
   msg.next = null;
   if (DEBUG) Log.v(TAG, "Returning message: " + msg);
   msg.markInUse();
   return msg;
   }
  } else {
   // No more messages.
   nextPollTimeoutMillis = -1;
  }
  // Process the quit message now that all pending messages have been handled.
  if (mQuitting) {
   dispose();
   return null;
  }
  // If first time idle, then get the number of idlers to run.
  // Idle handles only run if the queue is empty or if the first message
  // in the queue (possibly a barrier) is due to be handled in the future.
  if (pendingIdleHandlerCount < 0
   && (mMessages == null || now < mMessages.when)) {
   pendingIdleHandlerCount = mIdleHandlers.size();
  }
  if (pendingIdleHandlerCount <= 0) {
   // No idle handlers to run. Loop and wait some more.
   mBlocked = true;
   continue;
  }
  if (mPendingIdleHandlers == null) {
   mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
  }
  mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
  }
  // Run the idle handlers.
  // We only ever reach this code block during the first iteration.
  for (int i = 0; i < pendingIdleHandlerCount; i++) {
  final IdleHandler idler = mPendingIdleHandlers[i];
  mPendingIdleHandlers[i] = null; // release the reference to the handler
  boolean keep = false;
  try {
   keep = idler.queueIdle();
  } catch (Throwable t) {
   Log.wtf(TAG, "IdleHandler threw exception", t);
  }
  if (!keep) {
   synchronized (this) {
   mIdleHandlers.remove(idler);
   }
  }
  }
  // Reset the idle handler count to 0 so we do not run them again.
  pendingIdleHandlerCount = 0;
  // While calling an idle handler, a new message could have been delivered
  // so go back and look again for a pending message without waiting.
  nextPollTimeoutMillis = 0;
 }
 }

從24-30我們可以看到,他遍歷了整個(gè)queue找到msg,若是msg為null,我們可以看到50,他把nextPollTimeoutMillis = -1;實(shí)際上是等待enqueueMessage的nativeWake來喚醒。較深的源碼涉及了native層代碼,有興趣可以研究一下。簡(jiǎn)單來說next()方法,在有消息是會(huì)返回這條消息,若沒有,則阻塞在這里。

我們回到loop()方法27msg.target.dispatchMessage(msg);我們看代碼

public void dispatchMessage(Message msg) {
 if (msg.callback != null) {
  handleCallback(msg);
 } else {
  if (mCallback != null) {
  if (mCallback.handleMessage(msg)) {
   return;
  }
  }
  handleMessage(msg);
 }
 }

msg.target實(shí)際上就是發(fā)送這條消息的Handler,我們可以看到它將msg交給dispatchMessage(),最后調(diào)用了我們熟悉的方法handleMessage(msg);

以上就是深入淺析Android中的消息機(jī)制,小編相信有部分知識(shí)點(diǎn)可能是我們?nèi)粘9ぷ鲿?huì)見到或用到的。希望你能通過這篇文章學(xué)到更多知識(shí)。更多詳情敬請(qǐng)關(guān)注億速云行業(yè)資訊頻道。

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI