您好,登錄后才能下訂單哦!
小編給大家分享一下elasticsearch kibana查詢的示例分析,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!
一、簡單的CRUD操作
1、添加
PUT /index/type/id { "json數(shù)據(jù)" }
2、查詢
GET /index/type/id
3、修改
POST /index/type/id/_update { "doc": { "FIELD": "值" } }
4、刪除
DELETE /index/type/id
二、搜索
搜索可以分成六大類
1、query string search
2、query DSL
3、query filter
4、full-text search
5、phrase search
6、highlight search
1、query string search
搜索全部:GET supplier/user/_search
{ "took": 2, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 3, "max_score": 1, "hits": [ { "_index": "supplier", "_type": "user", "_id": "2", "_score": 1, "_source": { "name": "lisi", "age": 26, "address": "bei jing tong zhou", "price": 10000, "dept": [ "kaifabu" ] } }, { "_index": "supplier", "_type": "user", "_id": "1", "_score": 1, "_source": { "name": "zhangsan", "age": 30, "address": "bei jing chang chun jie", "price": 15000, "dept": [ "kaifabu", "yanfabu" ] } }, { "_index": "supplier", "_type": "user", "_id": "3", "_score": 1, "_source": { "name": "wangwu", "age": 26, "address": "bei jing tong zhou yun he ming zhu", "price": 13000, "dept": [ "kaifabu" ] } } ] } }
took:耗費(fèi)了幾毫秒
timed_out:是否超時,這里是沒有
_shards:數(shù)據(jù)拆成了5個分片,所以對于搜索請求,會打到所有的primary shard(或者是它的某個replica shard也可以)
hits.total:查詢結(jié)果的數(shù)量,3個document
hits.max_score:score的含義,就是document對于一個search的相關(guān)度的匹配分?jǐn)?shù),越相關(guān),就越匹配,分?jǐn)?shù)也高
hits.hits:包含了匹配搜索的document的詳細(xì)數(shù)據(jù)
2、query DSL
查詢所有
GET supplier/user/_search { "query": { "match_all": {} } }
查詢?nèi)坎⑶遗判?/p>
GET suppluer/user/_search { "query": { "match_all": {} } , "sort": [ { "price": { "order": "desc" } } ] }
分頁查詢
GET supplier/user/_search { "query": { "match_all": {} }, "from": 1, "size": 1 }
指定要查詢顯示的field
GET supplier/user/_search { "query": { "match_all": {} }, "_source": ["name", "price"] }
3、query filter
搜索name為‘lisi'并且price大于1500的
GET supplier/user/_search { "query" : { "bool" : { "must" : { "match" : { "name" : "lisi" } }, "filter" : { "range" : { "price" : { "gt" : 1500} } } } } }
4、full-text search(全文檢索)
address這個字段,會先被拆解,建立倒排索引
GET /ecommerce/product/_search { "query" : { "match" : { "address" : "bei jing" } } }
5、phrase search(短語搜索)
跟全文檢索相對應(yīng),相反,全文檢索會將輸入的搜索串拆解開來,去倒排索引里面去一一匹配,只要能匹配上任意一個拆解后的單詞,就可以作為結(jié)果返回
phrase search,要求輸入的搜索串,必須在指定的字段文本中,完全包含一模一樣的,才可以算匹配,才能作為結(jié)果返回
GET /ecommerce/product/_search { "query" : { "match_phrase" : { "address" : "bei jing" } } }
6、highlight search(高亮搜索結(jié)果)
GET /ecommerce/product/_search { "query" : { "match" : { "address" : "bei jing" } }, "highlight": { "fields" : { "address" : {} } } }
以上是“elasticsearch kibana查詢的示例分析”這篇文章的所有內(nèi)容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內(nèi)容對大家有所幫助,如果還想學(xué)習(xí)更多知識,歡迎關(guān)注億速云行業(yè)資訊頻道!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報,并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。