溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

SpringBoot 2.0 整合sharding-jdbc中間件實(shí)現(xiàn)數(shù)據(jù)分庫(kù)分表

發(fā)布時(shí)間:2020-10-22 16:05:00 來(lái)源:腳本之家 閱讀:251 作者:知了一笑 欄目:編程語(yǔ)言

一、水平分割

1、水平分庫(kù)
1)、概念:
 以字段為依據(jù),按照一定策略,將一個(gè)庫(kù)中的數(shù)據(jù)拆分到多個(gè)庫(kù)中。
2)、結(jié)果
 每個(gè)庫(kù)的結(jié)構(gòu)都一樣;數(shù)據(jù)都不一樣;
 所有庫(kù)的并集是全量數(shù)據(jù);
2、水平分表
1)、概念
 以字段為依據(jù),按照一定策略,將一個(gè)表中的數(shù)據(jù)拆分到多個(gè)表中。
2)、結(jié)果
 每個(gè)表的結(jié)構(gòu)都一樣;數(shù)據(jù)都不一樣;
 所有表的并集是全量數(shù)據(jù);

二、Shard-jdbc 中間件

1、架構(gòu)圖

SpringBoot 2.0 整合sharding-jdbc中間件實(shí)現(xiàn)數(shù)據(jù)分庫(kù)分表

2、特點(diǎn)

1)、Sharding-JDBC直接封裝JDBC API,舊代碼遷移成本幾乎為零。
2)、適用于任何基于Java的ORM框架,如Hibernate、Mybatis等 。
3)、可基于任何第三方的數(shù)據(jù)庫(kù)連接池,如DBCP、C3P0、 BoneCP、Druid等。
4)、以jar包形式提供服務(wù),無(wú)proxy代理層,無(wú)需額外部署,無(wú)其他依賴。
5)、分片策略靈活,可支持等號(hào)、between、in等多維度分片,也可支持多分片鍵。
6)、SQL解析功能完善,支持聚合、分組、排序、limit、or等查詢。

三、項(xiàng)目演示

1、項(xiàng)目結(jié)構(gòu)

SpringBoot 2.0 整合sharding-jdbc中間件實(shí)現(xiàn)數(shù)據(jù)分庫(kù)分表

springboot     2.0 版本
druid          1.1.13 版本
sharding-jdbc  3.1 版本

2、數(shù)據(jù)庫(kù)配置

SpringBoot 2.0 整合sharding-jdbc中間件實(shí)現(xiàn)數(shù)據(jù)分庫(kù)分表

SpringBoot 2.0 整合sharding-jdbc中間件實(shí)現(xiàn)數(shù)據(jù)分庫(kù)分表

SpringBoot 2.0 整合sharding-jdbc中間件實(shí)現(xiàn)數(shù)據(jù)分庫(kù)分表

一臺(tái)基礎(chǔ)庫(kù)映射(shard_one)
兩臺(tái)庫(kù)做分庫(kù)分表(shard_two,shard_three)。
表使用:table_one,table_two

3、核心代碼塊

數(shù)據(jù)源配置文件

spring:
 datasource:
  # 數(shù)據(jù)源:shard_one
  dataOne:
   type: com.alibaba.druid.pool.DruidDataSource
   druid:
    driverClassName: com.mysql.jdbc.Driver
    url: jdbc:mysql://localhost:3306/shard_one?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
    username: root
    password: 123
    initial-size: 10
    max-active: 100
    min-idle: 10
    max-wait: 60000
    pool-prepared-statements: true
    max-pool-prepared-statement-per-connection-size: 20
    time-between-eviction-runs-millis: 60000
    min-evictable-idle-time-millis: 300000
    max-evictable-idle-time-millis: 60000
    validation-query: SELECT 1 FROM DUAL
    # validation-query-timeout: 5000
    test-on-borrow: false
    test-on-return: false
    test-while-idle: true
    connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
  # 數(shù)據(jù)源:shard_two
  dataTwo:
   type: com.alibaba.druid.pool.DruidDataSource
   druid:
    driverClassName: com.mysql.jdbc.Driver
    url: jdbc:mysql://localhost:3306/shard_two?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
    username: root
    password: 123
    initial-size: 10
    max-active: 100
    min-idle: 10
    max-wait: 60000
    pool-prepared-statements: true
    max-pool-prepared-statement-per-connection-size: 20
    time-between-eviction-runs-millis: 60000
    min-evictable-idle-time-millis: 300000
    max-evictable-idle-time-millis: 60000
    validation-query: SELECT 1 FROM DUAL
    # validation-query-timeout: 5000
    test-on-borrow: false
    test-on-return: false
    test-while-idle: true
    connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
  # 數(shù)據(jù)源:shard_three
  dataThree:
   type: com.alibaba.druid.pool.DruidDataSource
   druid:
    driverClassName: com.mysql.jdbc.Driver
    url: jdbc:mysql://localhost:3306/shard_three?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
    username: root
    password: 123
    initial-size: 10
    max-active: 100
    min-idle: 10
    max-wait: 60000
    pool-prepared-statements: true
    max-pool-prepared-statement-per-connection-size: 20
    time-between-eviction-runs-millis: 60000
    min-evictable-idle-time-millis: 300000
    max-evictable-idle-time-millis: 60000
    validation-query: SELECT 1 FROM DUAL
    # validation-query-timeout: 5000
    test-on-borrow: false
    test-on-return: false
    test-while-idle: true
    connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000

數(shù)據(jù)庫(kù)分庫(kù)策略

/**
 * 數(shù)據(jù)庫(kù)映射計(jì)算
 */
public class DataSourceAlg implements PreciseShardingAlgorithm<String> {

  private static Logger LOG = LoggerFactory.getLogger(DataSourceAlg.class);
  @Override
  public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
    LOG.debug("分庫(kù)算法參數(shù) {},{}",names,value);
    int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
    return "ds_" + ((hash % 2) + 2) ;
  }
}

數(shù)據(jù)表1分表策略

/**
 * 分表算法
 */
public class TableOneAlg implements PreciseShardingAlgorithm<String> {
  private static Logger LOG = LoggerFactory.getLogger(TableOneAlg.class);
  /**
   * 該表每個(gè)庫(kù)分5張表
   */
  @Override
  public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
    LOG.debug("分表算法參數(shù) {},{}",names,value);
    int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
    return "table_one_" + (hash % 5+1);
  }
}

數(shù)據(jù)表2分表策略

/**
 * 分表算法
 */
public class TableTwoAlg implements PreciseShardingAlgorithm<String> {
  private static Logger LOG = LoggerFactory.getLogger(TableTwoAlg.class);
  /**
   * 該表每個(gè)庫(kù)分5張表
   */
  @Override
  public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
    LOG.debug("分表算法參數(shù) {},{}",names,value);
    int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
    return "table_two_" + (hash % 5+1);
  }
}

數(shù)據(jù)源集成配置

/**
 * 數(shù)據(jù)庫(kù)分庫(kù)分表配置
 */
@Configuration
public class ShardJdbcConfig {
  // 省略了 druid 配置,源碼中有
  /**
   * Shard-JDBC 分庫(kù)配置
   */
  @Bean
  public DataSource dataSource (@Autowired DruidDataSource dataOneSource,
                 @Autowired DruidDataSource dataTwoSource,
                 @Autowired DruidDataSource dataThreeSource) throws Exception {
    ShardingRuleConfiguration shardJdbcConfig = new ShardingRuleConfiguration();
    shardJdbcConfig.getTableRuleConfigs().add(getTableRule01());
    shardJdbcConfig.getTableRuleConfigs().add(getTableRule02());
    shardJdbcConfig.setDefaultDataSourceName("ds_0");
    Map<String,DataSource> dataMap = new LinkedHashMap<>() ;
    dataMap.put("ds_0",dataOneSource) ;
    dataMap.put("ds_2",dataTwoSource) ;
    dataMap.put("ds_3",dataThreeSource) ;
    Properties prop = new Properties();
    return ShardingDataSourceFactory.createDataSource(dataMap, shardJdbcConfig, new HashMap<>(), prop);
  }

  /**
   * Shard-JDBC 分表配置
   */
  private static TableRuleConfiguration getTableRule01() {
    TableRuleConfiguration result = new TableRuleConfiguration();
    result.setLogicTable("table_one");
    result.setActualDataNodes("ds_${2..3}.table_one_${1..5}");
    result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));
    result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableOneAlg()));
    return result;
  }
  private static TableRuleConfiguration getTableRule02() {
    TableRuleConfiguration result = new TableRuleConfiguration();
    result.setLogicTable("table_two");
    result.setActualDataNodes("ds_${2..3}.table_two_${1..5}");
    result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));
    result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableTwoAlg()));
    return result;
  }
}

測(cè)試代碼執(zhí)行流程

@RestController
public class ShardController {
  @Resource
  private ShardService shardService ;
  /**
   * 1、建表流程
   */
  @RequestMapping("/createTable")
  public String createTable (){
    shardService.createTable();
    return "success" ;
  }
  /**
   * 2、生成表 table_one 數(shù)據(jù)
   */
  @RequestMapping("/insertOne")
  public String insertOne (){
    shardService.insertOne();
    return "SUCCESS" ;
  }
  /**
   * 3、生成表 table_two 數(shù)據(jù)
   */
  @RequestMapping("/insertTwo")
  public String insertTwo (){
    shardService.insertTwo();
    return "SUCCESS" ;
  }
  /**
   * 4、查詢表 table_one 數(shù)據(jù)
   */
  @RequestMapping("/selectOneByPhone/{phone}")
  public TableOne selectOneByPhone (@PathVariable("phone") String phone){
    return shardService.selectOneByPhone(phone);
  }
  /**
   * 5、查詢表 table_one 數(shù)據(jù)
   */
  @RequestMapping("/selectTwoByPhone/{phone}")
  public TableTwo selectTwoByPhone (@PathVariable("phone") String phone){
    return shardService.selectTwoByPhone(phone);
  }
}

四、項(xiàng)目源碼

GitHub:知了一笑

https://github.com/cicadasmile/middle-ware-parent

總結(jié)

以上所述是小編給大家介紹的SpringBoot 2.0 整合sharding-jdbc中間件實(shí)現(xiàn)數(shù)據(jù)分庫(kù)分表,希望對(duì)大家有所幫助,如果大家有任何疑問(wèn)請(qǐng)給我留言,小編會(huì)及時(shí)回復(fù)大家的。在此也非常感謝大家對(duì)億速云網(wǎng)站的支持!
如果你覺(jué)得本文對(duì)你有幫助,歡迎轉(zhuǎn)載,煩請(qǐng)注明出處,謝謝!

向AI問(wèn)一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI