您好,登錄后才能下訂單哦!
一、水平分割
1、水平分庫(kù)
1)、概念:
以字段為依據(jù),按照一定策略,將一個(gè)庫(kù)中的數(shù)據(jù)拆分到多個(gè)庫(kù)中。
2)、結(jié)果
每個(gè)庫(kù)的結(jié)構(gòu)都一樣;數(shù)據(jù)都不一樣;
所有庫(kù)的并集是全量數(shù)據(jù);
2、水平分表
1)、概念
以字段為依據(jù),按照一定策略,將一個(gè)表中的數(shù)據(jù)拆分到多個(gè)表中。
2)、結(jié)果
每個(gè)表的結(jié)構(gòu)都一樣;數(shù)據(jù)都不一樣;
所有表的并集是全量數(shù)據(jù);
二、Shard-jdbc 中間件
1、架構(gòu)圖
2、特點(diǎn)
1)、Sharding-JDBC直接封裝JDBC API,舊代碼遷移成本幾乎為零。
2)、適用于任何基于Java的ORM框架,如Hibernate、Mybatis等 。
3)、可基于任何第三方的數(shù)據(jù)庫(kù)連接池,如DBCP、C3P0、 BoneCP、Druid等。
4)、以jar包形式提供服務(wù),無(wú)proxy代理層,無(wú)需額外部署,無(wú)其他依賴。
5)、分片策略靈活,可支持等號(hào)、between、in等多維度分片,也可支持多分片鍵。
6)、SQL解析功能完善,支持聚合、分組、排序、limit、or等查詢。
三、項(xiàng)目演示
1、項(xiàng)目結(jié)構(gòu)
springboot 2.0 版本
druid 1.1.13 版本
sharding-jdbc 3.1 版本
2、數(shù)據(jù)庫(kù)配置
一臺(tái)基礎(chǔ)庫(kù)映射(shard_one)
兩臺(tái)庫(kù)做分庫(kù)分表(shard_two,shard_three)。
表使用:table_one,table_two
3、核心代碼塊
數(shù)據(jù)源配置文件
spring: datasource: # 數(shù)據(jù)源:shard_one dataOne: type: com.alibaba.druid.pool.DruidDataSource druid: driverClassName: com.mysql.jdbc.Driver url: jdbc:mysql://localhost:3306/shard_one?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false username: root password: 123 initial-size: 10 max-active: 100 min-idle: 10 max-wait: 60000 pool-prepared-statements: true max-pool-prepared-statement-per-connection-size: 20 time-between-eviction-runs-millis: 60000 min-evictable-idle-time-millis: 300000 max-evictable-idle-time-millis: 60000 validation-query: SELECT 1 FROM DUAL # validation-query-timeout: 5000 test-on-borrow: false test-on-return: false test-while-idle: true connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000 # 數(shù)據(jù)源:shard_two dataTwo: type: com.alibaba.druid.pool.DruidDataSource druid: driverClassName: com.mysql.jdbc.Driver url: jdbc:mysql://localhost:3306/shard_two?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false username: root password: 123 initial-size: 10 max-active: 100 min-idle: 10 max-wait: 60000 pool-prepared-statements: true max-pool-prepared-statement-per-connection-size: 20 time-between-eviction-runs-millis: 60000 min-evictable-idle-time-millis: 300000 max-evictable-idle-time-millis: 60000 validation-query: SELECT 1 FROM DUAL # validation-query-timeout: 5000 test-on-borrow: false test-on-return: false test-while-idle: true connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000 # 數(shù)據(jù)源:shard_three dataThree: type: com.alibaba.druid.pool.DruidDataSource druid: driverClassName: com.mysql.jdbc.Driver url: jdbc:mysql://localhost:3306/shard_three?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false username: root password: 123 initial-size: 10 max-active: 100 min-idle: 10 max-wait: 60000 pool-prepared-statements: true max-pool-prepared-statement-per-connection-size: 20 time-between-eviction-runs-millis: 60000 min-evictable-idle-time-millis: 300000 max-evictable-idle-time-millis: 60000 validation-query: SELECT 1 FROM DUAL # validation-query-timeout: 5000 test-on-borrow: false test-on-return: false test-while-idle: true connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
數(shù)據(jù)庫(kù)分庫(kù)策略
/** * 數(shù)據(jù)庫(kù)映射計(jì)算 */ public class DataSourceAlg implements PreciseShardingAlgorithm<String> { private static Logger LOG = LoggerFactory.getLogger(DataSourceAlg.class); @Override public String doSharding(Collection<String> names, PreciseShardingValue<String> value) { LOG.debug("分庫(kù)算法參數(shù) {},{}",names,value); int hash = HashUtil.rsHash(String.valueOf(value.getValue())); return "ds_" + ((hash % 2) + 2) ; } }
數(shù)據(jù)表1分表策略
/** * 分表算法 */ public class TableOneAlg implements PreciseShardingAlgorithm<String> { private static Logger LOG = LoggerFactory.getLogger(TableOneAlg.class); /** * 該表每個(gè)庫(kù)分5張表 */ @Override public String doSharding(Collection<String> names, PreciseShardingValue<String> value) { LOG.debug("分表算法參數(shù) {},{}",names,value); int hash = HashUtil.rsHash(String.valueOf(value.getValue())); return "table_one_" + (hash % 5+1); } }
數(shù)據(jù)表2分表策略
/** * 分表算法 */ public class TableTwoAlg implements PreciseShardingAlgorithm<String> { private static Logger LOG = LoggerFactory.getLogger(TableTwoAlg.class); /** * 該表每個(gè)庫(kù)分5張表 */ @Override public String doSharding(Collection<String> names, PreciseShardingValue<String> value) { LOG.debug("分表算法參數(shù) {},{}",names,value); int hash = HashUtil.rsHash(String.valueOf(value.getValue())); return "table_two_" + (hash % 5+1); } }
數(shù)據(jù)源集成配置
/** * 數(shù)據(jù)庫(kù)分庫(kù)分表配置 */ @Configuration public class ShardJdbcConfig { // 省略了 druid 配置,源碼中有 /** * Shard-JDBC 分庫(kù)配置 */ @Bean public DataSource dataSource (@Autowired DruidDataSource dataOneSource, @Autowired DruidDataSource dataTwoSource, @Autowired DruidDataSource dataThreeSource) throws Exception { ShardingRuleConfiguration shardJdbcConfig = new ShardingRuleConfiguration(); shardJdbcConfig.getTableRuleConfigs().add(getTableRule01()); shardJdbcConfig.getTableRuleConfigs().add(getTableRule02()); shardJdbcConfig.setDefaultDataSourceName("ds_0"); Map<String,DataSource> dataMap = new LinkedHashMap<>() ; dataMap.put("ds_0",dataOneSource) ; dataMap.put("ds_2",dataTwoSource) ; dataMap.put("ds_3",dataThreeSource) ; Properties prop = new Properties(); return ShardingDataSourceFactory.createDataSource(dataMap, shardJdbcConfig, new HashMap<>(), prop); } /** * Shard-JDBC 分表配置 */ private static TableRuleConfiguration getTableRule01() { TableRuleConfiguration result = new TableRuleConfiguration(); result.setLogicTable("table_one"); result.setActualDataNodes("ds_${2..3}.table_one_${1..5}"); result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg())); result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableOneAlg())); return result; } private static TableRuleConfiguration getTableRule02() { TableRuleConfiguration result = new TableRuleConfiguration(); result.setLogicTable("table_two"); result.setActualDataNodes("ds_${2..3}.table_two_${1..5}"); result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg())); result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableTwoAlg())); return result; } }
測(cè)試代碼執(zhí)行流程
@RestController public class ShardController { @Resource private ShardService shardService ; /** * 1、建表流程 */ @RequestMapping("/createTable") public String createTable (){ shardService.createTable(); return "success" ; } /** * 2、生成表 table_one 數(shù)據(jù) */ @RequestMapping("/insertOne") public String insertOne (){ shardService.insertOne(); return "SUCCESS" ; } /** * 3、生成表 table_two 數(shù)據(jù) */ @RequestMapping("/insertTwo") public String insertTwo (){ shardService.insertTwo(); return "SUCCESS" ; } /** * 4、查詢表 table_one 數(shù)據(jù) */ @RequestMapping("/selectOneByPhone/{phone}") public TableOne selectOneByPhone (@PathVariable("phone") String phone){ return shardService.selectOneByPhone(phone); } /** * 5、查詢表 table_one 數(shù)據(jù) */ @RequestMapping("/selectTwoByPhone/{phone}") public TableTwo selectTwoByPhone (@PathVariable("phone") String phone){ return shardService.selectTwoByPhone(phone); } }
四、項(xiàng)目源碼
GitHub:知了一笑
https://github.com/cicadasmile/middle-ware-parent
總結(jié)
以上所述是小編給大家介紹的SpringBoot 2.0 整合sharding-jdbc中間件實(shí)現(xiàn)數(shù)據(jù)分庫(kù)分表,希望對(duì)大家有所幫助,如果大家有任何疑問(wèn)請(qǐng)給我留言,小編會(huì)及時(shí)回復(fù)大家的。在此也非常感謝大家對(duì)億速云網(wǎng)站的支持!
如果你覺(jué)得本文對(duì)你有幫助,歡迎轉(zhuǎn)載,煩請(qǐng)注明出處,謝謝!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。