溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶(hù)服務(wù)條款》

Python cookbook(數(shù)據(jù)結(jié)構(gòu)與算法)找到最大或最小的N個(gè)元素實(shí)現(xiàn)方法示例

發(fā)布時(shí)間:2020-10-13 13:54:31 來(lái)源:腳本之家 閱讀:134 作者:壟上行 欄目:開(kāi)發(fā)技術(shù)

本文實(shí)例講述了python找到最大或最小的N個(gè)元素實(shí)現(xiàn)方法。分享給大家供大家參考,具體如下:

問(wèn)題:想在某個(gè)集合中找出最大或最小的N個(gè)元素

解決方案:heapq模塊中的nlargest()nsmallest()兩個(gè)函數(shù)正是我們需要的。

>>> import heapq
>>> nums=[1,8,2,23,7,-4,18,23,42,37,2]
>>> print(heapq.nlargest(3,nums))
[42, 37, 23]
>>> print(heapq.nsmallest(3,nums))
[-4, 1, 2]
>>>

這兩個(gè)函數(shù)接受一個(gè)參數(shù)key,允許其工作在更復(fù)雜的數(shù)據(jù)結(jié)構(gòu)之上:

# example.py
#
# Example of using heapq to find the N smallest or largest items
import heapq
portfolio = [
 {'name': 'IBM', 'shares': 100, 'price': 91.1},
 {'name': 'AAPL', 'shares': 50, 'price': 543.22},
 {'name': 'FB', 'shares': 200, 'price': 21.09},
 {'name': 'HPQ', 'shares': 35, 'price': 31.75},
 {'name': 'YHOO', 'shares': 45, 'price': 16.35},
 {'name': 'ACME', 'shares': 75, 'price': 115.65}
]
cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])
print(cheap)
print(expensive)

Python 3.4.0 (v3.4.0:04f714765c13, Mar 16 2014, 19:24:06) [MSC v.1600 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> ================================ RESTART ================================
>>>
[{'name': 'YHOO', 'price': 16.35, 'shares': 45}, {'name': 'FB', 'price': 21.09, 'shares': 200}, {'name': 'HPQ', 'price': 31.75, 'shares': 35}]
[{'name': 'AAPL', 'price': 543.22, 'shares': 50}, {'name': 'ACME', 'price': 115.65, 'shares': 75}, {'name': 'IBM', 'price': 91.1, 'shares': 100}]
>>>

如果正在尋找的最大或最小的N個(gè)元素,且相比于集合中元素的數(shù)量,N很小時(shí),下面的函數(shù)性能更好。

這些函數(shù)首先會(huì)在底層將數(shù)據(jù)轉(zhuǎn)化為列表,且元素會(huì)以堆的順序排列。

>>> import heapq
>>> nums=[1,8,2,23,7,-4,18,23,42,37,2]
>>> heap=list(nums)
>>> heap
[1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
>>> heapq.heapify(heap) #heapify()參數(shù)必須是list,此函數(shù)將list變成堆,實(shí)時(shí)操作。從而能夠在任何情況下使用堆的函數(shù)。
>>> heap
[-4, 2, 1, 23, 7, 2, 18, 23, 42, 37, 8]
>>> heapq.heappop(heap)#如下是為了找到第3小的元素
-4
>>> heapq.heappop(heap)
1
>>> heapq.heappop(heap)
2
>>>

堆(heap)最重要的特性就是heap[0]總是最小的元素。可通過(guò)heapq.heappop()輕松找到最小值,這個(gè)操作的復(fù)雜度為O(logN),N代表堆得大小。

總結(jié):

1、當(dāng)要找的元素?cái)?shù)量相對(duì)較小時(shí),函數(shù)nlargest()nsmallest()才最適用。
2、若只是想找到最小和最大值(N=1)時(shí),使用min()和max()會(huì)更快。
3、若N和集合本身的大小差不多,更快的方法是先對(duì)集合排序再進(jìn)行切片操作(例如使用sorted(items)[:N]sorted(items)[-N:]
4、heapq.heappush(heap, item):將item壓入到堆數(shù)組heap中。如果不進(jìn)行此步操作,后面的heappop()失效;
heapq.heappop(heap):從堆數(shù)組heap中取出最小的值,并返回。
heapq.heapify(list):參數(shù)必須是list,此函數(shù)將list變成堆,實(shí)時(shí)操作。從而能夠在任何情況下使用堆的函數(shù)。
heapq.heappushpop(heap, item):是上述heappush和heappop的合體,同時(shí)完成兩者的功能.注意:相當(dāng)于先操作了heappush(heap,item),然后操作heappop(heap)
heapreplace(heap, item):是heappop(heap)和heappush(heap,item)的聯(lián)合操作。注意,與heappushpop(heap,item)的區(qū)別在于,順序不同,這里是先進(jìn)行刪除,后壓入堆
heap,merge(*iterables)

>>> h=[]   #定義一個(gè)list
>>> from heapq import * #引入heapq模塊
>>> h
[]
>>> heappush(h,5)  #向堆中依次增加數(shù)值
>>> heappush(h,2)
>>> heappush(h,3)
>>> heappush(h,9)
>>> h    #h的值
[2, 5, 3, 9]
>>> heappop(h)   #從h中刪除最小的,并返回該值
2
>>> h
[3, 5, 9]
>>> h.append(1)   #注意,如果不是壓入堆中,而是通過(guò)append追加一個(gè)數(shù)值
>>> h    #堆的函數(shù)并不能操作這個(gè)增加的數(shù)值,或者說(shuō)它堆對(duì)來(lái)講是不存在的
[3, 5, 9, 1]
>>> heappop(h)   #從h中能夠找到的最小值是3,而不是1
3
>>> heappush(h,2)  #這時(shí),不僅將2壓入到堆內(nèi),而且1也進(jìn)入了堆。
>>> h
[1, 2, 9, 5]
>>> heappop(h)   #操作對(duì)象已經(jīng)包含了1
1

>>> h
[1, 2, 9, 5]
>>> heappop(h)
1
>>> heappushpop(h,4)  #增加4同時(shí)刪除最小值2并返回該最小值,與下列操作等同:
2    #heappush(h,4),heappop(h)
>>> h
[4, 5, 9]

>>> a=[3,6,1]
>>> heapify(a)   #將a變成堆之后,可以對(duì)其操作
>>> heappop(a)
1
>>> b=[4,2,5]   #b不是堆,如果對(duì)其進(jìn)行操作,顯示結(jié)果如下
>>> heappop(b)   #按照順序,刪除第一個(gè)數(shù)值并返回,不會(huì)從中挑選出最小的
4
>>> heapify(b)   #變成堆之后,再操作
>>> heappop(b)
2

>>> a=[]
>>> heapreplace(a,3)  #如果list空,則報(bào)錯(cuò)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: index out of range
>>> heappush(a,3)
>>> a
[3]
>>> heapreplace(a,2)  #先執(zhí)行刪除(heappop(a)->3),再執(zhí)行加入(heappush(a,2))
3
>>> a
[2]
>>> heappush(a,5)
>>> heappush(a,9)
>>> heappush(a,4)
>>> a
[2, 4, 9, 5]
>>> heapreplace(a,6)  #先從堆a(bǔ)中找出最小值并返回,然后加入6
2
>>> a
[4, 5, 9, 6]
>>> heapreplace(a,1)  #1是后來(lái)加入的,在1加入之前,a中的最小值是4
4
>>> a
[1, 5, 9, 6]

>>> a=[2,4,6]
>>> b=[1,3,5]
>>> c=merge(a,b)
>>> list(c)
[1, 2, 3, 4, 5, 6]

更多關(guān)于Python相關(guān)內(nèi)容感興趣的讀者可查看本站專(zhuān)題:《Python數(shù)據(jù)結(jié)構(gòu)與算法教程》、《Python加密解密算法與技巧總結(jié)》、《Python編碼操作技巧總結(jié)》、《Python函數(shù)使用技巧總結(jié)》、《Python字符串操作技巧匯總》及《Python入門(mén)與進(jìn)階經(jīng)典教程》

希望本文所述對(duì)大家Python程序設(shè)計(jì)有所幫助。

向AI問(wèn)一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀(guān)點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI