溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

TensorFlow如何使用 tf.train.Saver()保存模型

發(fā)布時(shí)間:2021-08-10 11:15:22 來(lái)源:億速云 閱讀:154 作者:小新 欄目:開發(fā)技術(shù)

這篇文章將為大家詳細(xì)講解有關(guān)TensorFlow如何使用 tf.train.Saver()保存模型,小編覺(jué)得挺實(shí)用的,因此分享給大家做個(gè)參考,希望大家閱讀完這篇文章后可以有所收獲。

關(guān)于模型保存的一點(diǎn)心得

saver = tf.train.Saver(max_to_keep=3)

在定義 saver 的時(shí)候一般會(huì)定義最多保存模型的數(shù)量,一般來(lái)說(shuō),如果模型本身很大,我們需要考慮到硬盤大小。如果你需要在當(dāng)前訓(xùn)練好的模型的基礎(chǔ)上進(jìn)行 fine-tune,那么盡可能多的保存模型,后繼 fine-tune 不一定從最好的 ckpt 進(jìn)行,因?yàn)橛锌赡芤幌伦泳瓦^(guò)擬合了。但是如果保存太多,硬盤也有壓力呀。如果只想保留最好的模型,方法就是每次迭代到一定步數(shù)就在驗(yàn)證集上計(jì)算一次 accuracy 或者 f1 值,如果本次結(jié)果比上次好才保存新的模型,否則沒(méi)必要保存。

如果你想用不同 epoch 保存下來(lái)的模型進(jìn)行融合的話,3到5 個(gè)模型已經(jīng)足夠了,假設(shè)這各融合的模型成為 M,而最好的一個(gè)單模型稱為 m_best, 這樣融合的話對(duì)于M 確實(shí)可以比 m_best 更好。但是如果拿這個(gè)模型和其他結(jié)構(gòu)的模型再做融合的話,M 的效果并沒(méi)有 m_best 好,因?yàn)镸 相當(dāng)于做了平均操作,減少了該模型的“特性”。

但是又有一種新的融合方式,就是利用調(diào)整學(xué)習(xí)率來(lái)獲取多個(gè)局部最優(yōu)點(diǎn),就是當(dāng) loss 降不下了,保存一個(gè) ckpt, 然后開大學(xué)習(xí)率繼續(xù)尋找下一個(gè)局部最優(yōu)點(diǎn),然后用這些 ckpt 來(lái)做融合,還沒(méi)試過(guò),單模型肯定是有提高的,就是不知道還會(huì)不會(huì)出現(xiàn)上面再與其他模型融合就沒(méi)提高的情況。

如何使用 tf.train.Saver() 來(lái)保存模型

之前一直出錯(cuò),主要是因?yàn)榭拥木幋a問(wèn)題。所以要注意文件的路徑絕對(duì)不不要出現(xiàn)什么中文呀。

import tensorflow as tf
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)

# Create some variables.
v1 = tf.Variable([1.0, 2.3], name="v1")
v2 = tf.Variable(55.5, name="v2")

# Add an op to initialize the variables.
init_op = tf.global_variables_initializer()

# Add ops to save and restore all the variables.
saver = tf.train.Saver()

ckpt_path = './ckpt/test-model.ckpt'
# Later, launch the model, initialize the variables, do some work, save the
# variables to disk.
sess.run(init_op)
save_path = saver.save(sess, ckpt_path, global_step=1)
print("Model saved in file: %s" % save_path)

Model saved in file: ./ckpt/test-model.ckpt-1

注意,在上面保存完了模型之后。應(yīng)該把 kernel restart 之后才能使用下面的模型導(dǎo)入。否則會(huì)因?yàn)閮纱蚊?“v1” 而導(dǎo)致名字錯(cuò)誤。

import tensorflow as tf
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)

# Create some variables.
v1 = tf.Variable([11.0, 16.3], name="v1")
v2 = tf.Variable(33.5, name="v2")

# Add ops to save and restore all the variables.
saver = tf.train.Saver()

# Later, launch the model, use the saver to restore variables from disk, and
# do some work with the model.
# Restore variables from disk.
ckpt_path = './ckpt/test-model.ckpt'
saver.restore(sess, ckpt_path + '-'+ str(1))
print("Model restored.")

print sess.run(v1)
print sess.run(v2)

INFO:tensorflow:Restoring parameters from ./ckpt/test-model.ckpt-1
Model restored.
[ 1.          2.29999995]
55.5

導(dǎo)入模型之前,必須重新再定義一遍變量。

但是并不需要全部變量都重新進(jìn)行定義,只定義我們需要的變量就行了。

也就是說(shuō),你所定義的變量一定要在 checkpoint 中存在;但不是所有在checkpoint中的變量,你都要重新定義。

import tensorflow as tf
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)

# Create some variables.
v1 = tf.Variable([11.0, 16.3], name="v1")

# Add ops to save and restore all the variables.
saver = tf.train.Saver()

# Later, launch the model, use the saver to restore variables from disk, and
# do some work with the model.
# Restore variables from disk.
ckpt_path = './ckpt/test-model.ckpt'
saver.restore(sess, ckpt_path + '-'+ str(1))
print("Model restored.")

print sess.run(v1)

INFO:tensorflow:Restoring parameters from ./ckpt/test-model.ckpt-1
Model restored.
[ 1.          2.29999995]

tf.Saver([tensors_to_be_saved]) 中可以傳入一個(gè) list,把要保存的 tensors 傳入,如果沒(méi)有給定這個(gè)list的話,他會(huì)默認(rèn)保存當(dāng)前所有的 tensors。

關(guān)于“TensorFlow如何使用 tf.train.Saver()保存模型”這篇文章就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,使各位可以學(xué)到更多知識(shí),如果覺(jué)得文章不錯(cuò),請(qǐng)把它分享出去讓更多的人看到。

向AI問(wèn)一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI