您好,登錄后才能下訂單哦!
小編給大家分享一下pandas中pivot_table()如何按日期分多列數(shù)據(jù),相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!
如下所示:
date | 20170307 | 20170308 |
iphone4 | 2 | 0 |
iphone5 | 2 | 1 |
iphone6 | 0 | 1 |
先生成DF數(shù)據(jù)。
>>> df = pd.DataFrame.from_dict([['ip4','20170307',1],['ip4','20170307',1],['ip5','20170307',1],['ip5','20170307',1],['ip6','20170308',1],['ip5','20170308',1]]) >>> df.columns=['type','date','num'] >>>df
type date num 0 ip4 20170307 1 1 ip4 20170307 1 2 ip5 20170307 1 3 ip5 20170307 1 4 ip6 20170308 1 5 ip5 20170308 1
>>> pd.pivot_table(df,values='num',rows=['type'],cols=['date'],aggfunc=np.sum).fillna(0)
操作一下就是實(shí)現(xiàn)結(jié)果。
注:這個(gè)函數(shù)的參數(shù)形式在0.13.x版本里有效,其他版本請(qǐng)參考相應(yīng)文檔。
從0.14.0開(kāi)始,參數(shù)形式升級(jí)成pd.pivot_table(df,values='num',index=['type'],columns=['date'],aggfunc=np.sum).fillna(0)
以上是“pandas中pivot_table()如何按日期分多列數(shù)據(jù)”這篇文章的所有內(nèi)容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內(nèi)容對(duì)大家有所幫助,如果還想學(xué)習(xí)更多知識(shí),歡迎關(guān)注億速云行業(yè)資訊頻道!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。