您好,登錄后才能下訂單哦!
在參加“數(shù)據(jù)挖掘”比賽中遇到了關(guān)于函數(shù)高次擬合的問題,然后就整理了一下源碼,以便后期的學(xué)習(xí)與改進(jìn)。
在本次“數(shù)據(jù)挖掘”比賽中感覺收獲最大的還是對(duì)于神經(jīng)網(wǎng)絡(luò)的認(rèn)識(shí),在接近一周的時(shí)間里,研究了進(jìn)40種神經(jīng)網(wǎng)絡(luò)模型,雖然在持續(xù)一周的挖掘比賽把自己折磨的慘不忍睹,但是收獲頗豐。現(xiàn)在想想也挺欣慰自己在這段時(shí)間里接受新知識(shí)的能力。關(guān)于神經(jīng)網(wǎng)絡(luò)方面的理解會(huì)在后續(xù)博文中補(bǔ)充(剛提交完論文,還沒來得及整理),先分享一下高次擬合方面的知識(shí)。
# coding=utf-8 import matplotlib.pyplot as plt import numpy as np import scipy as sp import csv from scipy.stats import norm from sklearn.pipeline import Pipeline from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn import linear_model ''''' 數(shù)據(jù)導(dǎo)入 ''' def loadDataSet(fileName): dataMat = [] labelMat = [] csvfile = file(fileName, 'rb') reader = csv.reader(csvfile) b = 0 for line in reader: if line[50] is '': b += 1 else: dataMat.append(float(line[41])/100*20+30) labelMat.append(float(line[25])*100) csvfile.close() print "absence time number: %d" % b return dataMat,labelMat xArr,yArr = loadDataSet('data.csv') x = np.array(xArr) y = np.array(yArr) # x = np.arange(0, 1, 0.002) # y = norm.rvs(0, size=500, scale=0.1) # y = y + x ** 2 def rmse(y_test, y): return sp.sqrt(sp.mean((y_test - y) ** 2)) def R2(y_test, y_true): return 1 - ((y_test - y_true) ** 2).sum() / ((y_true - y_true.mean()) ** 2).sum() def R22(y_test, y_true): y_mean = np.array(y_true) y_mean[:] = y_mean.mean() return 1 - rmse(y_test, y_true) / rmse(y_mean, y_true) plt.scatter(x, y, s=5) #分別進(jìn)行1,2,3,6次擬合 degree = [1, 2,3, 6] y_test = [] y_test = np.array(y_test) for d in degree: #普通 # clf = Pipeline([('poly', PolynomialFeatures(degree=d)), # ('linear', LinearRegression(fit_intercept=False))]) # clf.fit(x[:, np.newaxis], y) # 嶺回歸 clf = Pipeline([('poly', PolynomialFeatures(degree=d)), ('linear', linear_model.Ridge())]) clf.fit(x[:, np.newaxis], y) y_test = clf.predict(x[:, np.newaxis]) print('多項(xiàng)式參數(shù)%s' %clf.named_steps['linear'].coef_) print('rmse=%.2f, R2=%.2f, R22=%.2f, clf.score=%.2f' % (rmse(y_test, y), R2(y_test, y), R22(y_test, y), clf.score(x[:, np.newaxis], y))) plt.plot(x, y_test, linewidth=2) plt.grid() plt.legend(['1', '2','3', '6'], loc='upper left') plt.show()
以上這篇對(duì)python實(shí)現(xiàn)二維函數(shù)高次擬合的示例詳解就是小編分享給大家的全部內(nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持億速云。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請(qǐng)聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。