您好,登錄后才能下訂單哦!
在照著Tensorflow官網(wǎng)的demo敲了一遍分類器項目的代碼后,運行倒是成功了,結(jié)果也不錯。但是最終還是要訓練自己的數(shù)據(jù),所以嘗試準備加載自定義的數(shù)據(jù),然而demo中只是出現(xiàn)了fashion_mnist.load_data()并沒有詳細的讀取過程,隨后我又找了些資料,把讀取的過程記錄在這里。
首先提一下需要用到的模塊:
import os import keras import matplotlib.pyplot as plt from PIL import Image from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split
圖片分類器項目,首先確定你要處理的圖片分辨率將是多少,這里的例子為30像素:
IMG_SIZE_X = 30
IMG_SIZE_Y = 30
其次確定你圖片的方式目錄:
image_path = r'D:\Projects\ImageClassifier\data\set' path = ".\data" # 你也可以使用相對路徑的方式 # image_path =os.path.join(path, "set")
目錄下的結(jié)構(gòu)如下:
相應(yīng)的label.txt如下:
動漫
風景
美女
物語
櫻花
接下來是接在labels.txt,如下:
label_name = "labels.txt" label_path = os.path.join(path, label_name) class_names = np.loadtxt(label_path, type(""))
這里簡便起見,直接利用了numpy的loadtxt函數(shù)直接加載。
之后便是正式處理圖片數(shù)據(jù)了,注釋就寫在里面了:
re_load = False re_build = False # re_load = True re_build = True data_name = "data.npz" data_path = os.path.join(path, data_name) model_name = "model.h6" model_path = os.path.join(path, model_name) count = 0 # 這里判斷是否存在序列化之后的數(shù)據(jù),re_load是一個開關(guān),是否強制重新處理,測試用,可以去除。 if not os.path.exists(data_path) or re_load: labels = [] images = [] print('Handle images') # 由于label.txt是和圖片防止目錄的分類目錄一一對應(yīng)的,即每個子目錄的目錄名就是labels.txt里的一個label,所以這里可以通過讀取class_names的每一項去拼接path后讀取 for index, name in enumerate(class_names): # 這里是拼接后的子目錄path classpath = os.path.join(image_path, name) # 先判斷一下是否是目錄 if not os.path.isdir(classpath): continue # limit是測試時候用的這里可以去除 limit = 0 for image_name in os.listdir(classpath): if limit >= max_size: break # 這里是拼接后的待處理的圖片path imagepath = os.path.join(classpath, image_name) count = count + 1 limit = limit + 1 # 利用Image打開圖片 img = Image.open(imagepath) # 縮放到你最初確定要處理的圖片分辨率大小 img = img.resize((IMG_SIZE_X, IMG_SIZE_Y)) # 轉(zhuǎn)為灰度圖片,這里彩色通道會干擾結(jié)果,并且會加大計算量 img = img.convert("L") # 轉(zhuǎn)為numpy數(shù)組 img = np.array(img) # 由(30,30)轉(zhuǎn)為(1,30,30)(即`channels_first`),當然你也可以轉(zhuǎn)換為(30,30,1)(即`channels_last`)但為了之后預覽處理后的圖片方便這里采用了(1,30,30)的格式存放 img = np.reshape(img, (1, IMG_SIZE_X, IMG_SIZE_Y)) # 這里利用循環(huán)生成labels數(shù)據(jù),其中存放的實際是class_names中對應(yīng)元素的索引 labels.append([index]) # 添加到images中,最后統(tǒng)一處理 images.append(img) # 循環(huán)中一些狀態(tài)的輸出,可以去除 print("{} class: {} {} limit: {} {}" .format(count, index + 1, class_names[index], limit, imagepath)) # 最后一次性將images和labels都轉(zhuǎn)換成numpy數(shù)組 npy_data = np.array(images) npy_labels = np.array(labels) # 處理數(shù)據(jù)只需要一次,所以我們選擇在這里利用numpy自帶的方法將處理之后的數(shù)據(jù)序列化存儲 np.savez(data_path, x=npy_data, y=npy_labels) print("Save images by npz") else: # 如果存在序列化號的數(shù)據(jù),便直接讀取,提高速度 npy_data = np.load(data_path)["x"] npy_labels = np.load(data_path)["y"] print("Load images by npz") image_data = npy_data labels_data = npy_labels
到了這里原始數(shù)據(jù)的加工預處理便已經(jīng)完成,只需要最后一步,就和demo中fashion_mnist.load_data()返回的結(jié)果一樣了。代碼如下:
# 最后一步就是將原始數(shù)據(jù)分成訓練數(shù)據(jù)和測試數(shù)據(jù) train_images, test_images, train_labels, test_labels = \ train_test_split(image_data, labels_data, test_size=0.2, random_state=6)
這里將相關(guān)信息打印的方法也附上:
print("_________________________________________________________________") print("%-28s %-s" % ("Name", "Shape")) print("=================================================================") print("%-28s %-s" % ("Image Data", image_data.shape)) print("%-28s %-s" % ("Labels Data", labels_data.shape)) print("=================================================================") print('Split train and test data,p=%') print("_________________________________________________________________") print("%-28s %-s" % ("Name", "Shape")) print("=================================================================") print("%-28s %-s" % ("Train Images", train_images.shape)) print("%-28s %-s" % ("Test Images", test_images.shape)) print("%-28s %-s" % ("Train Labels", train_labels.shape)) print("%-28s %-s" % ("Test Labels", test_labels.shape)) print("=================================================================")
之后別忘了歸一化喲:
print("Normalize images") train_images = train_images / 255.0 test_images = test_images / 255.0
最后附上讀取自定義數(shù)據(jù)的完整代碼:
import os import keras import matplotlib.pyplot as plt from PIL import Image from keras.layers import * from keras.models import * from keras.optimizers import Adam from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 支持中文 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用來正常顯示中文標簽 plt.rcParams['axes.unicode_minus'] = False # 用來正常顯示負號 re_load = False re_build = False # re_load = True re_build = True epochs = 50 batch_size = 5 count = 0 max_size = 2000000000
以上就是本文的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持億速云。
免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。