溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

梅爾頻率倒譜系數(shù)(mfcc)及Python實現(xiàn)

發(fā)布時間:2020-10-24 17:34:16 來源:腳本之家 閱讀:651 作者:Luqiang_Shi 欄目:開發(fā)技術(shù)

語音識別系統(tǒng)的第一步是進行特征提取,mfcc是描述短時功率譜包絡的一種特征,在語音識別系統(tǒng)中被廣泛應用。

一、mel濾波器

每一段語音信號被分為多幀,每幀信號都對應一個頻譜(通過FFT變換實現(xiàn)),頻譜表示頻率與信號能量之間的關(guān)系。mel濾波器是指多個帶通濾波器,在mel頻率中帶通濾波器的通帶是等寬的,但在赫茲(Hertz)頻譜內(nèi)mel濾波器在低頻處較密集切通帶較窄,高頻處較稀疏且通帶較寬,旨在通過在較低頻率處更具辨別性并且在較高頻率處較少辨別性來模擬非線性人類耳朵對聲音的感知。

赫茲頻率和梅爾頻率之間的關(guān)系為:

梅爾頻率倒譜系數(shù)(mfcc)及Python實現(xiàn)

假設(shè)在梅爾頻譜內(nèi),有M 個帶通濾波器Hm (k),0≤m<M,每個帶通濾波器的中心頻率為F(m) F(m)F(m)每個帶通濾波器的傳遞函數(shù)為:

梅爾頻率倒譜系數(shù)(mfcc)及Python實現(xiàn)

下圖為赫茲頻率內(nèi)的mel濾波器,帶通濾波器個數(shù)為24:

梅爾頻率倒譜系數(shù)(mfcc)及Python實現(xiàn)

二、mfcc特征

MFCC系數(shù)提取步驟:

(1)語音信號分幀處理
(2)每一幀傅里葉變換---->功率譜
(3)將短時功率譜通過mel濾波器
(4)濾波器組系數(shù)取對數(shù)
(5)將濾波器組系數(shù)的對數(shù)進行離散余弦變換(DCT)
(6)一般將第2到底13個倒譜系數(shù)保留作為短時語音信號的特征

Python實現(xiàn)

import wave
import numpy as np
import math
import matplotlib.pyplot as plt
from scipy.fftpack import dct

def read(data_path):
 '''讀取語音信號
 '''
 wavepath = data_path
 f = wave.open(wavepath,'rb')
 params = f.getparams()
 nchannels,sampwidth,framerate,nframes = params[:4] #聲道數(shù)、量化位數(shù)、采樣頻率、采樣點數(shù)
 str_data = f.readframes(nframes) #讀取音頻,字符串格式
 f.close()
 wavedata = np.fromstring(str_data,dtype = np.short) #將字符串轉(zhuǎn)化為浮點型數(shù)據(jù)
 wavedata = wavedata * 1.0 / (max(abs(wavedata))) #wave幅值歸一化
 return wavedata,nframes,framerate

def enframe(data,win,inc):
 '''對語音數(shù)據(jù)進行分幀處理
 input:data(一維array):語音信號
   wlen(int):滑動窗長
   inc(int):窗口每次移動的長度
 output:f(二維array)每次滑動窗內(nèi)的數(shù)據(jù)組成的二維array
 '''
 nx = len(data) #語音信號的長度
 try:
  nwin = len(win)
 except Exception as err:
  nwin = 1 
 if nwin == 1:
  wlen = win
 else:
  wlen = nwin
 nf = int(np.fix((nx - wlen) / inc) + 1) #窗口移動的次數(shù)
 f = np.zeros((nf,wlen)) #初始化二維數(shù)組
 indf = [inc * j for j in range(nf)]
 indf = (np.mat(indf)).T
 inds = np.mat(range(wlen))
 indf_tile = np.tile(indf,wlen)
 inds_tile = np.tile(inds,(nf,1))
 mix_tile = indf_tile + inds_tile
 f = np.zeros((nf,wlen))
 for i in range(nf):
  for j in range(wlen):
   f[i,j] = data[mix_tile[i,j]]
 return f

def point_check(wavedata,win,inc):
 '''語音信號端點檢測
 input:wavedata(一維array):原始語音信號
 output:StartPoint(int):起始端點
   EndPoint(int):終止端點
 '''
 #1.計算短時過零率
 FrameTemp1 = enframe(wavedata[0:-1],win,inc)
 FrameTemp2 = enframe(wavedata[1:],win,inc)
 signs = np.sign(np.multiply(FrameTemp1,FrameTemp2)) # 計算每一位與其相鄰的數(shù)據(jù)是否異號,異號則過零
 signs = list(map(lambda x:[[i,0] [i>0] for i in x],signs))
 signs = list(map(lambda x:[[i,1] [i<0] for i in x], signs))
 diffs = np.sign(abs(FrameTemp1 - FrameTemp2)-0.01)
 diffs = list(map(lambda x:[[i,0] [i<0] for i in x], diffs))
 zcr = list((np.multiply(signs, diffs)).sum(axis = 1))
 #2.計算短時能量
 amp = list((abs(enframe(wavedata,win,inc))).sum(axis = 1))
# # 設(shè)置門限
# print('設(shè)置門限')
 ZcrLow = max([round(np.mean(zcr)*0.1),3])#過零率低門限
 ZcrHigh = max([round(max(zcr)*0.1),5])#過零率高門限
 AmpLow = min([min(amp)*10,np.mean(amp)*0.2,max(amp)*0.1])#能量低門限
 AmpHigh = max([min(amp)*10,np.mean(amp)*0.2,max(amp)*0.1])#能量高門限
 # 端點檢測
 MaxSilence = 8 #最長語音間隙時間
 MinAudio = 16 #最短語音時間
 Status = 0 #狀態(tài)0:靜音段,1:過渡段,2:語音段,3:結(jié)束段
 HoldTime = 0 #語音持續(xù)時間
 SilenceTime = 0 #語音間隙時間
 print('開始端點檢測')
 StartPoint = 0
 for n in range(len(zcr)):
  if Status ==0 or Status == 1:
   if amp[n] > AmpHigh or zcr[n] > ZcrHigh:
    StartPoint = n - HoldTime
    Status = 2
    HoldTime = HoldTime + 1
    SilenceTime = 0
   elif amp[n] > AmpLow or zcr[n] > ZcrLow:
    Status = 1
    HoldTime = HoldTime + 1
   else:
    Status = 0
    HoldTime = 0
  elif Status == 2:
   if amp[n] > AmpLow or zcr[n] > ZcrLow:
    HoldTime = HoldTime + 1
   else:
    SilenceTime = SilenceTime + 1
    if SilenceTime < MaxSilence:
     HoldTime = HoldTime + 1
    elif (HoldTime - SilenceTime) < MinAudio:
     Status = 0
     HoldTime = 0
     SilenceTime = 0
    else:
     Status = 3
  elif Status == 3:
   break
  if Status == 3:
   break
 HoldTime = HoldTime - SilenceTime
 EndPoint = StartPoint + HoldTime
 return FrameTemp1[StartPoint:EndPoint]


def mfcc(FrameK,framerate,win):
 '''提取mfcc參數(shù) 
 input:FrameK(二維array):二維分幀語音信號
   framerate:語音采樣頻率
   win:分幀窗長(FFT點數(shù))
 output:
 '''
 #mel濾波器
 mel_bank,w2 = mel_filter(24,win,framerate,0,0.5)
 FrameK = FrameK.T
 #計算功率譜
 S = abs(np.fft.fft(FrameK,axis = 0)) ** 2
 #將功率譜通過濾波器
 P = np.dot(mel_bank,S[0:w2,:])
 #取對數(shù)
 logP = np.log(P)
 #計算DCT系數(shù)
# rDCT = 12
# cDCT = 24
# dctcoef = []
# for i in range(1,rDCT+1):
#  tmp = [np.cos((2*j+1)*i*math.pi*1.0/(2.0*cDCT)) for j in range(cDCT)]
#  dctcoef.append(tmp)
# #取對數(shù)后做余弦變換 
# D = np.dot(dctcoef,logP)
 num_ceps = 12
 D = dct(logP,type = 2,axis = 0,norm = 'ortho')[1:(num_ceps+1),:]
 return S,mel_bank,P,logP,D
 


def mel_filter(M,N,fs,l,h):
 '''mel濾波器
 input:M(int):濾波器個數(shù)
   N(int):FFT點數(shù)
   fs(int):采樣頻率
   l(float):低頻系數(shù)
   h(float):高頻系數(shù)
 output:melbank(二維array):mel濾波器
 '''
 fl = fs * l #濾波器范圍的最低頻率
 fh = fs * h #濾波器范圍的最高頻率
 bl = 1125 * np.log(1 + fl / 700) #將頻率轉(zhuǎn)換為mel頻率
 bh = 1125 * np.log(1 + fh /700) 
 B = bh - bl #頻帶寬度
 y = np.linspace(0,B,M+2) #將mel刻度等間距
 print('mel間隔',y)
 Fb = 700 * (np.exp(y / 1125) - 1) #將mel變?yōu)镠Z
 print(Fb)
 w2 = int(N / 2 + 1)
 df = fs / N
 freq = [] #采樣頻率值
 for n in range(0,w2):
  freqs = int(n * df)
  freq.append(freqs)
 melbank = np.zeros((M,w2))
 print(freq)
 
 for k in range(1,M+1):
  f1 = Fb[k - 1]
  f2 = Fb[k + 1]
  f0 = Fb[k]
  n1 = np.floor(f1/df)
  n2 = np.floor(f2/df)
  n0 = np.floor(f0/df)
  for i in range(1,w2):
   if i >= n1 and i <= n0:
    melbank[k-1,i] = (i-n1)/(n0-n1)
   if i >= n0 and i <= n2:
    melbank[k-1,i] = (n2-i)/(n2-n0)
  plt.plot(freq,melbank[k-1,:])
 plt.show()
 return melbank,w2

if __name__ == '__main__':
 data_path = 'audio_data.wav'
 win = 256
 inc = 80
 wavedata,nframes,framerate = read(data_path)
 FrameK = point_check(wavedata,win,inc)
 S,mel_bank,P,logP,D = mfcc(FrameK,framerate,win)

以上就是本文的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持億速云。

向AI問一下細節(jié)

免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI