溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

使用pandas怎么遍歷dataframe中的元素

發(fā)布時間:2021-04-17 17:31:06 來源:億速云 閱讀:362 作者:Leah 欄目:開發(fā)技術

這篇文章將為大家詳細講解有關使用pandas怎么遍歷dataframe中的元素,文章內(nèi)容質(zhì)量較高,因此小編分享給大家做個參考,希望大家閱讀完這篇文章后對相關知識有一定的了解。

方法一:

pandas的dataframe有一個很好用的函數(shù)applymap,它可以把某個函數(shù)應用到dataframe的每一個元素上,而且比常規(guī)的for循環(huán)去遍歷每個元素要快很多。如下是相關代碼:

import pandas as pd
data = [["str","ewt","earw"],["agter","awetg","aeorgh"]]
dataframe1 = pd.DataFrame(data=data,columns=["name1","name2","name3"])
print(dataframe1)
bool_array = dataframe1.applymap(lambda x:"w" in x)
out_array = dataframe1[bool_array]
print(out_array)
 
>>
  name1 name2  name3
0  str  ewt  earw
1 agter awetg aeorgh
 
 name1 name2 name3
0  NaN  ewt earw
1  NaN awetg  NaN

代碼中,bool_array為一個邏輯矩陣,滿足條件元素的位置為true,否則為false。然后通過邏輯矩陣去索引dataframe1,就可以得出滿足條件的元素。

方法二:

第一種方法是一次性遍歷每個元素,這樣不好分column去處理,那換一種方式可以每次遍歷一列

#接上面代碼
file_columns = dataframe1.columns.tolist()
for column in file_columns:
  bool_index = dataframe1[column].str.contains("w")
  filter_data = dataframe1[column][bool_index]
  print(filter_data)
 
>>
Series([], Name: name1, dtype: object)
0   ewt
1  awetg
Name: name2, dtype: object
0  earw
Name: name3, dtype: object

關于使用pandas怎么遍歷dataframe中的元素就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。

向AI問一下細節(jié)

免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權內(nèi)容。

AI