您好,登錄后才能下訂單哦!
這篇文章主要介紹了python如何將四元數(shù)變換為旋轉矩陣,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。
如下所示:
import numpy as np from autolab_core import RigidTransform # 寫上用四元數(shù)表示的orientation和xyz表示的position orientation = {'y': -0.6971278819736084, 'x': -0.716556549511624, 'z': -0.010016582945017661, 'w': 0.02142651612120239} position = {'y': -0.26022684372145516, 'x': 0.6453529828252734, 'z': 1.179122068068349} rotation_quaternion = np.asarray([orientation['w'], orientation['x'], orientation['y'], orientation['z']]) translation = np.asarray([position['x'], position['y'], position['z']]) # 這里用的是UC Berkeley的autolab_core,比較方便吧,當然可以自己寫一個fuction來計算,計算公式在https://www.cnblogs.com/flyinggod/p/8144100.html T_qua2rota = RigidTransform(rotation_quaternion, translation) print(T_qua2rota) # 以下是打印的結果 Tra: [ 0.64535298 -0.26022684 1.17912207] Rot: [[ 0.02782477 0.99949234 -0.01551915] [ 0.99863386 -0.02710724 0.0446723 ] [ 0.04422894 -0.01674094 -0.99888114]] Qtn: [-0.02142652 0.71655655 0.69712788 0.01001658] from unassigned to world
自己寫的話
def quaternion_to_rotation_matrix(quat): q = quat.copy() n = np.dot(q, q) if n < np.finfo(q.dtype).eps: return np.identity(4) q = q * np.sqrt(2.0 / n) q = np.outer(q, q) rot_matrix = np.array( [[1.0 - q[2, 2] - q[3, 3], q[1, 2] + q[3, 0], q[1, 3] - q[2, 0], 0.0], [q[1, 2] - q[3, 0], 1.0 - q[1, 1] - q[3, 3], q[2, 3] + q[1, 0], 0.0], [q[1, 3] + q[2, 0], q[2, 3] - q[1, 0], 1.0 - q[1, 1] - q[2, 2], 0.0], [0.0, 0.0, 0.0, 1.0]], dtype=q.dtype) return rot_matrix
感謝你能夠認真閱讀完這篇文章,希望小編分享的“python如何將四元數(shù)變換為旋轉矩陣”這篇文章對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業(yè)資訊頻道,更多相關知識等著你來學習!
免責聲明:本站發(fā)布的內容(圖片、視頻和文字)以原創(chuàng)、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關證據(jù),一經查實,將立刻刪除涉嫌侵權內容。