您好,登錄后才能下訂單哦!
最近閑著沒事,想把coursera上斯坦福ML課程里面的練習,用Python來實現(xiàn)一下,一是加深ML的基礎,二是熟悉一下numpy,matplotlib,scipy這些庫。
在EX2中,優(yōu)化theta使用了matlab里面的fminunc函數,不知道Python里面如何實現(xiàn)。搜索之后,發(fā)現(xiàn)stackflow上有人提到用scipy庫里面的minimize函數來替代。我嘗試直接調用我的costfunction和grad,程序報錯,提示(3,)和(100,1)dim維度不等,gradient vector不對之類的,試了N多次后,終于發(fā)現(xiàn)問題何在。。
首先來看看使用np.info(minimize)查看函數的介紹,傳入的參數有:
fun : callable The objective function to be minimized. ``fun(x, *args) -> float`` where x is an 1-D array with shape (n,) and `args` is a tuple of the fixed parameters needed to completely specify the function. x0 : ndarray, shape (n,) Initial guess. Array of real elements of size (n,), where 'n' is the number of independent variables. args : tuple, optional Extra arguments passed to the objective function and its derivatives (`fun`, `jac` and `hess` functions). method : str or callable, optional Type of solver. Should be one of - 'Nelder-Mead' :ref:`(see here) <optimize.minimize-neldermead>` - 'Powell' :ref:`(see here) <optimize.minimize-powell>` - 'CG' :ref:`(see here) <optimize.minimize-cg>` - 'BFGS' :ref:`(see here) <optimize.minimize-bfgs>` - 'Newton-CG' :ref:`(see here) <optimize.minimize-newtoncg>` - 'L-BFGS-B' :ref:`(see here) <optimize.minimize-lbfgsb>` - 'TNC' :ref:`(see here) <optimize.minimize-tnc>` - 'COBYLA' :ref:`(see here) <optimize.minimize-cobyla>` - 'SLSQP' :ref:`(see here) <optimize.minimize-slsqp>` - 'trust-constr':ref:`(see here) <optimize.minimize-trustconstr>` - 'dogleg' :ref:`(see here) <optimize.minimize-dogleg>` - 'trust-ncg' :ref:`(see here) <optimize.minimize-trustncg>` - 'trust-exact' :ref:`(see here) <optimize.minimize-trustexact>` - 'trust-krylov' :ref:`(see here) <optimize.minimize-trustkrylov>` - custom - a callable object (added in version 0.14.0), see below for description. If not given, chosen to be one of ``BFGS``, ``L-BFGS-B``, ``SLSQP``, depending if the problem has constraints or bounds. jac : {callable, '2-point', '3-point', 'cs', bool}, optional Method for computing the gradient vector. Only for CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov, trust-exact and trust-constr. If it is a callable, it should be a function that returns the gradient vector: ``jac(x, *args) -> array_like, shape (n,)`` where x is an array with shape (n,) and `args` is a tuple with the fixed parameters. Alternatively, the keywords {'2-point', '3-point', 'cs'} select a finite difference scheme for numerical estimation of the gradient. Options '3-point' and 'cs' are available only to 'trust-constr'. If `jac` is a Boolean and is True, `fun` is assumed to return the gradient along with the objective function. If False, the gradient will be estimated using '2-point' finite difference estimation.
需要注意的是fun關鍵詞參數里面的函數,需要把優(yōu)化的theta放在第一個位置,X,y,放到后面。并且,theta在傳入的時候一定要是一個一維shape(n,)的數組,不然會出錯。
然后jac是梯度,這里的有兩個地方要注意,第一個是傳入的theta依然要是一個一維shape(n,),第二個是返回的梯度也要是一個一維shape(n,)的數組。
總之,關鍵在于傳入的theta一定要是一個1D shape(n,)的,不然就不行。我之前為了方便已經把theta塑造成了一個(n,1)的列向量,導致使用minimize時會報錯。所以,學會用help看說明可謂是相當重要啊~
import numpy as np import pandas as pd import scipy.optimize as op def LoadData(filename): data=pd.read_csv(filename,header=None) data=np.array(data) return data def ReshapeData(data): m=np.size(data,0) X=data[:,0:2] Y=data[:,2] Y=Y.reshape((m,1)) return X,Y def InitData(X): m,n=X.shape initial_theta = np.zeros(n + 1) VecOnes = np.ones((m, 1)) X = np.column_stack((VecOnes, X)) return X,initial_theta def sigmoid(x): z=1/(1+np.exp(-x)) return z def costFunction(theta,X,Y): m=X.shape[0] J = (-np.dot(Y.T, np.log(sigmoid(X.dot(theta)))) - \ np.dot((1 - Y).T, np.log(1 - sigmoid(X.dot(theta))))) / m return J def gradient(theta,X,Y): m,n=X.shape theta=theta.reshape((n,1)) grad=np.dot(X.T,sigmoid(X.dot(theta))-Y)/m return grad.flatten() if __name__=='__main__': data = LoadData('ex2data1csv.csv') X, Y = ReshapeData(data) X, initial_theta = InitData(X) result = op.minimize(fun=costFunction, x0=initial_theta, args=(X, Y), method='TNC', jac=gradient) print(result)
最后結果如下,符合MATLAB里面用fminunc優(yōu)化的結果(fminunc:cost:0.203,theta:-25.161,0.206,0.201)
fun: array([0.2034977]) jac: array([8.95038682e-09, 8.16149951e-08, 4.74505693e-07]) message: 'Local minimum reached (|pg| ~= 0)' nfev: 36 nit: 17 status: 0 success: True x: array([-25.16131858, 0.20623159, 0.20147149])
此外,由于知道cost在0.203左右,所以我用最笨的梯度下降試了一下,由于后面實在是太慢了,所以設置while J>0.21,循環(huán)了大概13W次。。可見,使用集成好的優(yōu)化算法是多么重要。。。還有,在以前的理解中,如果一個學習速率不合適,J會一直發(fā)散,但是昨天的實驗發(fā)現(xiàn),有的速率開始會發(fā)散,后面還是會收斂。
以上這篇基于Python fminunc 的替代方法就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。
免責聲明:本站發(fā)布的內容(圖片、視頻和文字)以原創(chuàng)、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。