溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Python3 利用face_recognition實現(xiàn)人臉識別的方法

發(fā)布時間:2020-09-29 15:17:33 來源:腳本之家 閱讀:268 作者:1、、 欄目:開發(fā)技術(shù)

前言

之前實踐了下face++在線人臉識別版本,這回做一下離線版本。github 上面有關(guān)于face_recognition的相關(guān)資料,本人只是做個搬運工,對其中的一些內(nèi)容進行搬運,對其中一些例子進行實現(xiàn)。

官方描述:

face_recognition是一個強大、簡單、易上手的人臉識別開源項目,并且配備了完整的開發(fā)文檔和應用案例,特別是兼容樹莓派系統(tǒng)。本項目是世界上最簡潔的人臉識別庫,你可以使用Python和命令行工具提取、識別、操作人臉。本項目的人臉識別是基于業(yè)內(nèi)領(lǐng)先的C++開源庫 dlib中的深度學習模型,用Labeled Faces in the Wild人臉數(shù)據(jù)集進行測試,有高達99.38%的準確率。但對小孩和亞洲人臉的識別準確率尚待提升。

(關(guān)于兼容樹莓派,以后有板子了再做一下)

下面兩個鏈接劃重點

https://github.com/ageitgey/face_recognition/blob/master/README_Simplified_Chinese.md
https://face-recognition.readthedocs.io/en/latest/face_recognition.html

環(huán)境配置

  • ubuntu16.04(其他環(huán)境的安裝可以參考第一個鏈接,官方有說明)
  • pycharm(可忽略,怎么舒服怎么來)
  • python3
  • opencv(我的是4.1.2,三點幾的版本應該也一樣)

實際上只需要安裝face_recognition,當然,沒有opencv的也需要安裝一下opencv

pip3 install face_recognition

圖片準備

由于需要做一些圖片的比對,因此需要準備一些圖片,本文圖片取自以下鏈接

https://www.zhihu.com/question/314169580/answer/872770507

接下來開始操作

官方還有提供命令行的操作(這個沒去做),本文不做這個,我們只要是要在python中用face_recognition,因此定位到這一塊。

Python3 利用face_recognition實現(xiàn)人臉識別的方法

這個api文檔地址就是上面的第二個鏈接。進去之后可以看到:

Python3 利用face_recognition實現(xiàn)人臉識別的方法

part1.識別圖片中的人是誰

代碼

# part1
# 識別圖片中的人是誰
import face_recognition
known_image = face_recognition.load_image_file("lyf1.jpg")
unknown_image = face_recognition.load_image_file("lyf2.jpg")

lyf_encoding = face_recognition.face_encodings(known_image)[0]
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]

results = face_recognition.compare_faces([lyf_encoding], unknown_encoding)	
# A list of True/False values indicating which known_face_encodings match the face encoding to check

print(type(results))
print(results)

if results[0] == True:
  print("yes")
else:
  print("no")

結(jié)果

<class 'list'>
[True]
yes

part2.從圖片中找到人臉

代碼

# part2
# 從圖片中找到人臉(定位人臉位置)

import face_recognition
import cv2

image = face_recognition.load_image_file("lyf1.jpg")

face_locations_useCNN = face_recognition.face_locations(image,model='cnn')
# model – Which face detection model to use. “hog” is less accurate but faster on CPUs.
# “cnn” is a more accurate deep-learning model which is GPU/CUDA accelerated (if available). The default is “hog”.

face_locations_noCNN=face_recognition.face_locations(image)
# A list of tuples of found face locations in css (top, right, bottom, left) order
# 因為返回值的順序是這樣子的,因此在后面的for循環(huán)里面賦值要注意按這個順序來

print("face_location_useCNN:")
print(face_locations_useCNN)
face_num1=len(face_locations_useCNN)
print(face_num1)    # The number of faces


print("face_location_noCNN:")
print(face_locations_noCNN)
face_num2=len(face_locations_noCNN)
print(face_num2)    # The number of faces
# 到這里為止,可以觀察兩種情況的坐標和人臉數(shù),一般來說,坐標會不一樣,但是檢測出來的人臉數(shù)應該是一樣的
# 也就是說face_num1?。健ace_num2; face_locations_useCNN 和 face_locations_noCNN 不一樣


org = cv2.imread("lyf1.jpg")
img = cv2.imread("lyf1.jpg")
cv2.imshow("lyf1.jpg",img) # 原始圖片

# Go to get the data and draw the rectangle
# use CNN
for i in range(0,face_num1):
  top = face_locations_useCNN[i][0]
  right = face_locations_useCNN[i][1]
  bottom = face_locations_useCNN[i][2]
  left = face_locations_useCNN[i][3]

  start = (left, top)
  end = (right, bottom)

  color = (0,255,255)
  thickness = 2
  cv2.rectangle(img, start, end, color, thickness)  # opencv 里面畫矩形的函數(shù)

# Show the result
cv2.imshow("useCNN",img)


# for face_location in face_locations_noCNN:
#
#   # Print the location of each face in this image
#   top, right, bottom, left = face_location
# # 等價于下面的這種寫法

for i in range(0,face_num2):
  top = face_locations_noCNN[i][0]
  right = face_locations_noCNN[i][1]
  bottom = face_locations_noCNN[i][2]
  left = face_locations_noCNN[i][3]

  start = (left, top)
  end = (right, bottom)

  color = (0,255,255)
  thickness = 2
  cv2.rectangle(org, start, end, color, thickness)

cv2.imshow("no cnn ",org)

cv2.waitKey(0)
cv2.destroyAllWindows()

結(jié)果

face_location_useCNN:
[(223, 470, 427, 266)]
1
face_location_noCNN:
[(242, 489, 464, 266)]
1

圖片效果大致是這樣

Python3 利用face_recognition實現(xiàn)人臉識別的方法

part3.找到人臉并將其裁剪打印出來(使用cnn定位人臉)

代碼

# part3
# 找到人臉并將其裁剪打印出來(使用cnn定位人臉)

from PIL import Image
import face_recognition

# Load the jpg file into a numpy array
image = face_recognition.load_image_file("lyf1.jpg")

face_locations = face_recognition.face_locations(image, number_of_times_to_upsample=0, model="cnn")

print("I found {} face(s) in this photograph.".format(len(face_locations)))

for face_location in face_locations:
  top, right, bottom, left = face_location
  print("A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right))

  face_image = image[top:bottom, left:right]
  pil_image = Image.fromarray(face_image)
  pil_image.show()

結(jié)果

I found 1 face(s) in this photograph.
A face is located at pixel location Top: 205, Left: 276, Bottom: 440, Right: 512

圖片效果大致是這樣

Python3 利用face_recognition實現(xiàn)人臉識別的方法

part4.識別單張圖片中人臉的關(guān)鍵點

代碼

# part4 識別單張圖片中人臉的關(guān)鍵點

from PIL import Image, ImageDraw
import face_recognition

# Load the jpg file into a numpy array
image = face_recognition.load_image_file("lyf1.jpg")

# Find all facial features in all the faces in the image
face_landmarks_list = face_recognition.face_landmarks(image)
# print(face_landmarks_list)

print("I found {} face(s) in this photograph.".format(len(face_landmarks_list)))

# Create a PIL imagedraw object so we can draw on the picture
pil_image = Image.fromarray(image)
d = ImageDraw.Draw(pil_image)

for face_landmarks in face_landmarks_list:

  # Print the location of each facial feature in this image
  for facial_feature in face_landmarks.keys():
    print("The {} in this face has the following points: {}".format(facial_feature, face_landmarks[facial_feature]))

  # Let's trace out each facial feature in the image with a line!
  for facial_feature in face_landmarks.keys():
    d.line(face_landmarks[facial_feature], width=5)

# Show the picture
pil_image.show()

結(jié)果

I found 1 face(s) in this photograph.
The left_eyebrow in this face has the following points: [(305, 285), (321, 276), (340, 277), (360, 281), (377, 288)]
The right_eye in this face has the following points: [(422, 313), (432, 303), (446, 302), (459, 305), (449, 312), (435, 314)]
The nose_bridge in this face has the following points: [(394, 309), (394, 331), (395, 354), (396, 375)]
The right_eyebrow in this face has the following points: [(407, 287), (424, 278), (442, 273), (461, 272), (478, 279)]
The bottom_lip in this face has the following points: [(429, 409), (419, 421), (408, 428), (398, 430), (389, 429), (377, 424), (364, 412), (370, 413), (389, 414), (398, 415), (407, 413), (423, 411)]
The chin in this face has the following points: [(289, 295), (291, 323), (296, 351), (303, 378), (315, 403), (332, 428), (353, 448), (376, 464), (400, 467), (422, 461), (441, 444), (459, 425), (473, 403), (484, 377), (490, 351), (493, 323), (493, 296)]
The top_lip in this face has the following points: [(364, 412), (377, 407), (389, 403), (397, 406), (406, 402), (417, 405), (429, 409), (423, 411), (406, 412), (397, 414), (389, 413), (370, 413)]
The left_eye in this face has the following points: [(327, 308), (339, 304), (353, 306), (364, 314), (352, 317), (338, 316)]
The nose_tip in this face has the following points: [(375, 383), (386, 387), (396, 390), (407, 385), (416, 381)]

圖片效果

Python3 利用face_recognition實現(xiàn)人臉識別的方法

到此這篇關(guān)于Python3 利用face_recognition實現(xiàn)人臉識別的方法的文章就介紹到這了,更多相關(guān)Python3 人臉識別內(nèi)容請搜索億速云以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持億速云!

向AI問一下細節(jié)

免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI