溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

python如何實(shí)現(xiàn)手勢(shì)識(shí)別

發(fā)布時(shí)間:2020-08-03 13:52:52 來源:億速云 閱讀:187 作者:小豬 欄目:開發(fā)技術(shù)

這篇文章主要講解了python如何實(shí)現(xiàn)手勢(shì)識(shí)別,內(nèi)容清晰明了,對(duì)此有興趣的小伙伴可以學(xué)習(xí)一下,相信大家閱讀完之后會(huì)有幫助。

使用open-cv實(shí)現(xiàn)簡(jiǎn)單的手勢(shì)識(shí)別。剛剛接觸python不久,看到了很多有意思的項(xiàng)目,尤其時(shí)關(guān)于計(jì)算機(jī)視覺的。網(wǎng)上搜到了一些關(guān)于手勢(shì)處理的實(shí)驗(yàn),我在這兒簡(jiǎn)單的實(shí)現(xiàn)一下(PS:和那些大佬比起來真的是差遠(yuǎn)了,畢竟剛接觸不久),主要運(yùn)用的知識(shí)就是opencv,python基本語法,圖像處理基礎(chǔ)知識(shí)。

最終實(shí)現(xiàn)結(jié)果:

python如何實(shí)現(xiàn)手勢(shì)識(shí)別

獲取視頻(攝像頭

這部分沒啥說的,就是獲取攝像頭。

cap = cv2.VideoCapture("C:/Users/lenovo/Videos/1.mp4")#讀取文件
#cap = cv2.VideoCapture(0)#讀取攝像頭
while(True):
  ret, frame = cap.read()  key = cv2.waitKey(50) & 0xFF
  if key == ord('q'):
  	break
cap.release()
cv2.destroyAllWindows()

膚色檢測(cè)

這里使用的是橢圓膚色檢測(cè)模型
在RGB空間里人臉的膚色受亮度影響相當(dāng)大,所以膚色點(diǎn)很難從非膚色點(diǎn)中分離出來,也就是說在此空間經(jīng)過處理后,膚色點(diǎn)是離散的點(diǎn),中間嵌有很多非膚色,這為膚色區(qū)域標(biāo)定(人臉標(biāo)定、眼睛等)帶來了難題。如果把RGB轉(zhuǎn)為YCrCb空間的話,可以忽略Y(亮度)的影響,因?yàn)樵摽臻g受亮度影響很小,膚色會(huì)產(chǎn)生很好的類聚。這樣就把三維的空間將為二維的CrCb,膚色點(diǎn)會(huì)形成一定得形狀,如:人臉的話會(huì)看到一個(gè)人臉的區(qū)域,手臂的話會(huì)看到一條手臂的形態(tài)。

def A(img):

  YCrCb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) #轉(zhuǎn)換至YCrCb空間
  (y,cr,cb) = cv2.split(YCrCb) #拆分出Y,Cr,Cb值
  cr1 = cv2.GaussianBlur(cr, (5,5), 0)
  _, skin = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) #Ostu處理
  res = cv2.bitwise_and(img,img, mask = skin)
  return res

輪廓處理

輪廓處理的話主要用到兩個(gè)函數(shù),cv2.findContours和cv2.drawContours,這兩個(gè)函數(shù)的使用使用方法很容易搜到就不說了,這部分主要的問題是提取到的輪廓有很多個(gè),但是我們只需要手的輪廓,所以我們要用sorted函數(shù)找到最大的輪廓。

def B(img):

  #binaryimg = cv2.Canny(Laplacian, 50, 200) #二值化,canny檢測(cè)
  h = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) #尋找輪廓
  contour = h[0]
  contour = sorted(contour, key = cv2.contourArea, reverse=True)#已輪廓區(qū)域面積進(jìn)行排序
  #contourmax = contour[0][:, 0, :]#保留區(qū)域面積最大的輪廓點(diǎn)坐標(biāo)
  bg = np.ones(dst.shape, np.uint8) *255#創(chuàng)建白色幕布
  ret = cv2.drawContours(bg,contour[0],-1,(0,0,0),3) #繪制黑色輪廓
  return ret

全部代碼

""" 從視頻讀取幀保存為圖片"""
import cv2
import numpy as np
cap = cv2.VideoCapture("C:/Users/lenovo/Videos/1.mp4")#讀取文件
#cap = cv2.VideoCapture(0)#讀取攝像頭

#皮膚檢測(cè)
def A(img):

  YCrCb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) #轉(zhuǎn)換至YCrCb空間
  (y,cr,cb) = cv2.split(YCrCb) #拆分出Y,Cr,Cb值
  cr1 = cv2.GaussianBlur(cr, (5,5), 0)
  _, skin = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) #Ostu處理
  res = cv2.bitwise_and(img,img, mask = skin)
  return res

def B(img):

  #binaryimg = cv2.Canny(Laplacian, 50, 200) #二值化,canny檢測(cè)
  h = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) #尋找輪廓
  contour = h[0]
  contour = sorted(contour, key = cv2.contourArea, reverse=True)#已輪廓區(qū)域面積進(jìn)行排序
  #contourmax = contour[0][:, 0, :]#保留區(qū)域面積最大的輪廓點(diǎn)坐標(biāo)
  bg = np.ones(dst.shape, np.uint8) *255#創(chuàng)建白色幕布
  ret = cv2.drawContours(bg,contour[0],-1,(0,0,0),3) #繪制黑色輪廓
  return ret


while(True):

  ret, frame = cap.read()
  #下面三行可以根據(jù)自己的電腦進(jìn)行調(diào)節(jié)
  src = cv2.resize(frame,(400,350), interpolation=cv2.INTER_CUBIC)#窗口大小
  cv2.rectangle(src, (90, 60), (300, 300 ), (0, 255, 0))#框出截取位置
  roi = src[60:300 , 90:300] # 獲取手勢(shì)框圖

  res = A(roi) # 進(jìn)行膚色檢測(cè)
  cv2.imshow("0",roi)

  gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
  dst = cv2.Laplacian(gray, cv2.CV_16S, ksize = 3)
  Laplacian = cv2.convertScaleAbs(dst)

  contour = B(Laplacian)#輪廓處理
  cv2.imshow("2",contour)

  key = cv2.waitKey(50) & 0xFF
  if key == ord('q'):
      break
cap.release()
cv2.destroyAllWindows()

看完上述內(nèi)容,是不是對(duì)python如何實(shí)現(xiàn)手勢(shì)識(shí)別有進(jìn)一步的了解,如果還想學(xué)習(xí)更多內(nèi)容,歡迎關(guān)注億速云行業(yè)資訊頻道。

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI